SIFT Features Tracking for Video Stabilization

S. Battiato, G. Gallo, G. Puglisi, Salvatore Scellato
{"title":"SIFT Features Tracking for Video Stabilization","authors":"S. Battiato, G. Gallo, G. Puglisi, Salvatore Scellato","doi":"10.1109/ICIAP.2007.116","DOIUrl":null,"url":null,"abstract":"This paper presents a video stabilization algorithm based on the extraction and tracking of scale invariant feature transform features through video frames. Implementation of SIFT operator is analyzed and adapted to be used in a feature-based motion estimation algorithm. SIFT features are extracted from video frames and then their trajectory is evaluated to estimate interframe motion. A modified version of iterative least squares method is adopted to avoid estimation errors and features are tracked as they appear in nearby frames to improve video stability. Intentional camera motion is eventually filtered with adaptive motion vector integration. Results confirm the effectiveness of the method.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"228","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 228

Abstract

This paper presents a video stabilization algorithm based on the extraction and tracking of scale invariant feature transform features through video frames. Implementation of SIFT operator is analyzed and adapted to be used in a feature-based motion estimation algorithm. SIFT features are extracted from video frames and then their trajectory is evaluated to estimate interframe motion. A modified version of iterative least squares method is adopted to avoid estimation errors and features are tracked as they appear in nearby frames to improve video stability. Intentional camera motion is eventually filtered with adaptive motion vector integration. Results confirm the effectiveness of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIFT特征跟踪视频稳定
提出了一种基于视频帧尺度不变特征变换特征提取和跟踪的视频稳像算法。分析了SIFT算子的实现方法,并将其应用于基于特征的运动估计算法中。从视频帧中提取SIFT特征,然后对其轨迹进行评估,估计帧间运动。采用改进的迭代最小二乘法来避免估计误差,并在特征出现在附近帧时进行跟踪,提高视频稳定性。有意的相机运动最终通过自适应运动矢量集成进行过滤。结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time Gesture Recognition in Advanced Videocommunication Services Corner Displacement from Motion Blur A Method of Clustering Combination Applied to Satellite Image Analysis Sight enhancement through video fusion in a surveillance system Robust Iris Localization and Tracking based on Constrained Visual Fitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1