Automatic Classification of Heart Sounds Using Long Short-Term Memory

Bilal Ahmad, Faiq Ahmad Khan, Kaleem Nawaz Khan, Muhammad Salman Khan
{"title":"Automatic Classification of Heart Sounds Using Long Short-Term Memory","authors":"Bilal Ahmad, Faiq Ahmad Khan, Kaleem Nawaz Khan, Muhammad Salman Khan","doi":"10.1109/ICOSST53930.2021.9683975","DOIUrl":null,"url":null,"abstract":"Heart diseases are serious and must be detected early using an auscultation examination. To explore and diagnose heart problems, several signal processing and machine learning approaches are used. From a Phonocardiogram (PCG) signal, the heart sound (HS) can be categorized into normal and abnormal. This paper presents an improvedcomputer-aidedtechniquefor classification of HS using long short-term memory (LSTM)deployed withdifferent time and frequency domain features, i.e., discrete wavelet transform (DWT) and Mel-frequency cepstral coefficients (MFCCs). The overall score, accuracy, sensitivity, and specificity of the LSTM classifier are calculated for the performance evaluation. With the proposed set of experimentsthe classification algorithm achieved a final score of 90.04% (Accuracy 90%, Sensitivity 92.30%, and Specificity 87.69%).","PeriodicalId":325357,"journal":{"name":"2021 15th International Conference on Open Source Systems and Technologies (ICOSST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Open Source Systems and Technologies (ICOSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSST53930.2021.9683975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Heart diseases are serious and must be detected early using an auscultation examination. To explore and diagnose heart problems, several signal processing and machine learning approaches are used. From a Phonocardiogram (PCG) signal, the heart sound (HS) can be categorized into normal and abnormal. This paper presents an improvedcomputer-aidedtechniquefor classification of HS using long short-term memory (LSTM)deployed withdifferent time and frequency domain features, i.e., discrete wavelet transform (DWT) and Mel-frequency cepstral coefficients (MFCCs). The overall score, accuracy, sensitivity, and specificity of the LSTM classifier are calculated for the performance evaluation. With the proposed set of experimentsthe classification algorithm achieved a final score of 90.04% (Accuracy 90%, Sensitivity 92.30%, and Specificity 87.69%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用长短期记忆的心音自动分类
心脏病很严重,必须通过听诊检查及早发现。为了探索和诊断心脏问题,使用了几种信号处理和机器学习方法。从心音图(PCG)信号可以将心音分为正常和异常。本文提出了一种改进的计算机辅助HS分类技术,利用具有不同时频域特征的长短期记忆(LSTM),即离散小波变换(DWT)和mel -频率倒谱系数(MFCCs)。计算LSTM分类器的总体得分、准确性、灵敏度和特异性来进行性能评估。在该实验集下,分类算法的最终得分为90.04%(准确率90%,灵敏度92.30%,特异性87.69%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Question Answer Re-Ranking using Syntactic Relationship IoT based Smart Fan Dimmer with suppressed Humming Sound and Nonlinear Effect of Inverter Detection of Freezing of Gait in Parkinson's Disease by Squeeze-and-Excitation Convolutional Neural Network with Wearable Sensors A Bag-of-Features (BoF) Based Novel Framework for the Detection of COVID-19 An efficient rating system for players based on their position statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1