An IoT-oriented Multiple Data Replicas Placement Strategy in Hybrid Fog-Cloud Environment

N. Salah, Narjès Bellamine Ben Saoud
{"title":"An IoT-oriented Multiple Data Replicas Placement Strategy in Hybrid Fog-Cloud Environment","authors":"N. Salah, Narjès Bellamine Ben Saoud","doi":"10.1145/3437959.3459251","DOIUrl":null,"url":null,"abstract":"The growing adoption of Fog computing for the sensitive-time IoT applications allows to facilitate the real-time actions and to enhance their efficiency and performance. In fact, keeping the data in the distributed Fog network brings the advantages and power of the Cloud closer to where data are generated while saving network bandwidth and reducing latency and operational costs. However, due to the diversity of the Fog nodes, IoT system distribution and data sharing, how and where to place the produced data with low latency is a main challenge. Moreover, a data placement based on a single replica cannot meet the data access requirements of all data consumers that have different topology positions. Thus, in this paper, we propose a multi-objective optimization data placement model in a hybrid Fog-Cloud environment based on multiple data replicas. It aims to find better distributed data storage while optimizing the overall system latency and the used storage space by minimizing the data replicas and following full and partial data replication methods. Further, we propose a greedy algorithm $iFogDP_h$ which uses a refined method to find a solution for assigning the IoT data to the appropriate data hosts in polynomial time by reducing the time required to transfer data for storage, access and replication. We conducted the experiments on iFogSim, a toolkit for modeling and simulation of Fog environments. The experimental results show the effectiveness of our proposed solution in terms of latency, storage overhead and the number of data replicas compared to the existing strategies.","PeriodicalId":255272,"journal":{"name":"SIGSIM Principles of Advanced Discrete Simulation","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSIM Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437959.3459251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing adoption of Fog computing for the sensitive-time IoT applications allows to facilitate the real-time actions and to enhance their efficiency and performance. In fact, keeping the data in the distributed Fog network brings the advantages and power of the Cloud closer to where data are generated while saving network bandwidth and reducing latency and operational costs. However, due to the diversity of the Fog nodes, IoT system distribution and data sharing, how and where to place the produced data with low latency is a main challenge. Moreover, a data placement based on a single replica cannot meet the data access requirements of all data consumers that have different topology positions. Thus, in this paper, we propose a multi-objective optimization data placement model in a hybrid Fog-Cloud environment based on multiple data replicas. It aims to find better distributed data storage while optimizing the overall system latency and the used storage space by minimizing the data replicas and following full and partial data replication methods. Further, we propose a greedy algorithm $iFogDP_h$ which uses a refined method to find a solution for assigning the IoT data to the appropriate data hosts in polynomial time by reducing the time required to transfer data for storage, access and replication. We conducted the experiments on iFogSim, a toolkit for modeling and simulation of Fog environments. The experimental results show the effectiveness of our proposed solution in terms of latency, storage overhead and the number of data replicas compared to the existing strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雾云混合环境下面向物联网的多数据副本放置策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hierarchical resource management for enhancing performance of large-scale simulations on data centers Transparent multi-core speculative parallelization of DES models with event and cross-state dependencies The earth system modeling framework: interoperability infrastructure for high performance weather and climate models Modeling and simulation of data center networks Synchronisation for dynamic load balancing of decentralised conservative distributed simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1