Image Compression with Laplacian Guided Scale Space Inpainting

Lingzhi Zhang, P. Kumar, Manuj R. Sabharwal, Andy Kuzma, Jianbo Shi
{"title":"Image Compression with Laplacian Guided Scale Space Inpainting","authors":"Lingzhi Zhang, P. Kumar, Manuj R. Sabharwal, Andy Kuzma, Jianbo Shi","doi":"10.1109/ICIP40778.2020.9191041","DOIUrl":null,"url":null,"abstract":"We present an image compression algorithm that preserves high-frequency details and information of rare occurrences. Our approach can be thought of as image inpainting in the frequency scale space. Given an image, we construct a Laplacian image pyramid, and store only the finest and coarsest levels, thereby removing the middle-frequency of the image. Using a network backbone borrowed from an image super-resolution algorithm, we train our network to hallucinate the missing middle-level Laplacian image. We introduce a novel training paradigm where we train our algorithm using only a face dataset where the faces are aligned and scaled correctly. We demonstrate that image compression learned on this restricted dataset leads to better GAN network [1] convergence and generalization to completely different image domains. We also show that Lapacian inpainting could be simplified further with a few selective pixels as seeds.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an image compression algorithm that preserves high-frequency details and information of rare occurrences. Our approach can be thought of as image inpainting in the frequency scale space. Given an image, we construct a Laplacian image pyramid, and store only the finest and coarsest levels, thereby removing the middle-frequency of the image. Using a network backbone borrowed from an image super-resolution algorithm, we train our network to hallucinate the missing middle-level Laplacian image. We introduce a novel training paradigm where we train our algorithm using only a face dataset where the faces are aligned and scaled correctly. We demonstrate that image compression learned on this restricted dataset leads to better GAN network [1] convergence and generalization to completely different image domains. We also show that Lapacian inpainting could be simplified further with a few selective pixels as seeds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拉普拉斯引导尺度空间绘图的图像压缩
我们提出了一种保留高频细节和罕见信息的图像压缩算法。我们的方法可以被认为是在频率尺度空间中的图像修复。给定图像,我们构建一个拉普拉斯图像金字塔,并仅存储最细和最粗的层,从而去除图像的中频。利用借鉴图像超分辨率算法的网络骨干,我们训练网络产生缺失的中层拉普拉斯图像。我们引入了一种新的训练范式,我们只使用人脸数据集来训练我们的算法,其中人脸是正确对齐和缩放的。我们证明了在这个受限数据集上学习的图像压缩导致更好的GAN网络[1]收敛和泛化到完全不同的图像域。我们还表明,使用一些选择性像素作为种子,可以进一步简化Lapacian图像绘制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1