An Effective Classification Method for BCI Based on Optimized SVM by GA

Xue Rong, Jun-Han Yan, Hongxiang Guo, Beibei Yu
{"title":"An Effective Classification Method for BCI Based on Optimized SVM by GA","authors":"Xue Rong, Jun-Han Yan, Hongxiang Guo, Beibei Yu","doi":"10.1109/GCIS.2012.69","DOIUrl":null,"url":null,"abstract":"This paper proposed an effective method for EEG data classification in a Brain-Computer Interfacing system. We use Principal Component Analysis for feature extracting, then use an optimized Support Vector Machine for classification. The SVM's parameters are optimized by Genetic Algorithm. Furthermore, and optimal signal combination search is performed to get a higher classification rate, an explanation from the human physiological point of view is given. Experiment shows that this method can achieve higher classification accuracy than normal SVM classifier and artificial neural network.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposed an effective method for EEG data classification in a Brain-Computer Interfacing system. We use Principal Component Analysis for feature extracting, then use an optimized Support Vector Machine for classification. The SVM's parameters are optimized by Genetic Algorithm. Furthermore, and optimal signal combination search is performed to get a higher classification rate, an explanation from the human physiological point of view is given. Experiment shows that this method can achieve higher classification accuracy than normal SVM classifier and artificial neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法优化支持向量机的BCI分类方法
提出了一种有效的脑机接口系统脑电信号分类方法。我们使用主成分分析进行特征提取,然后使用优化的支持向量机进行分类。采用遗传算法对支持向量机参数进行优化。为了获得更高的分类率,采用最优信号组合搜索,并从人体生理角度进行了解释。实验表明,该方法比普通SVM分类器和人工神经网络具有更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Different Meteorological Series The Design and Application for a Bio-inspired Nonlinear Intelligent Controller Problem-Specific Knowledge Based Heuristic Algorithm to Solve Satellite Broadcast Scheduling Problem Micro Pitch and Vary Speed for Extreme Value Search MPPT Method of DFIG Academic Relation Classification Rules Extraction with Correlation Feature Weight Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1