Uncertainty quantification in state estimation using the probabilistic collocation method

Guang Lin, N. Zhou, T. Ferryman, F. Tuffner
{"title":"Uncertainty quantification in state estimation using the probabilistic collocation method","authors":"Guang Lin, N. Zhou, T. Ferryman, F. Tuffner","doi":"10.1109/PSCE.2011.5772599","DOIUrl":null,"url":null,"abstract":"This paper proposes a probabilistic collocation method (PCM) to quantify the uncertainties in state estimation. Comparing to classic Monte-Carlo (MC) method, the proposed PCM is based on sparse grid points and uses a smaller number of sparse grid points to quantify the uncertainty. Thus, the proposed PCM can quantify a large number of uncertain power system variables with relatively lower computational cost. The algorithm and procedure are outlined. The proposed PCM is applied to IEEE 14 bus system to quantify the uncertainty of power system state estimation. Comparison is made with MC method. The simulation results shows that the proposed PCM can achieve same accuracy as MC method with smaller ensemble size and thus is computationally more efficient than MC method.","PeriodicalId":120665,"journal":{"name":"2011 IEEE/PES Power Systems Conference and Exposition","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/PES Power Systems Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSCE.2011.5772599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper proposes a probabilistic collocation method (PCM) to quantify the uncertainties in state estimation. Comparing to classic Monte-Carlo (MC) method, the proposed PCM is based on sparse grid points and uses a smaller number of sparse grid points to quantify the uncertainty. Thus, the proposed PCM can quantify a large number of uncertain power system variables with relatively lower computational cost. The algorithm and procedure are outlined. The proposed PCM is applied to IEEE 14 bus system to quantify the uncertainty of power system state estimation. Comparison is made with MC method. The simulation results shows that the proposed PCM can achieve same accuracy as MC method with smaller ensemble size and thus is computationally more efficient than MC method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率搭配法在状态估计中的不确定性量化
本文提出了一种概率配置方法来量化状态估计中的不确定性。与经典的蒙特卡罗(MC)方法相比,该方法基于稀疏网格点,使用较少的稀疏网格点来量化不确定性。因此,所提出的PCM可以量化大量不确定的电力系统变量,且计算成本相对较低。概述了算法和程序。将所提出的PCM应用于ieee14总线系统,对电力系统状态估计的不确定性进行了量化。并与MC法进行了比较。仿真结果表明,所提出的PCM方法可以达到与MC方法相同的精度,但集合尺寸更小,计算效率比MC方法高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Testing the “smarts” in the smart T & D grid Similarity measures in Small World Stratification for distribution fault diagnosis Market-based transmission expansion planning Customer-centered control system for intelligent and green building with heuristic optimization Concepts of FACTS controllers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1