HOW DOES ARTIFICIAL INTELLIGENCE HELP ASTRONOMY? A REVIEW

Manit Rajendrakumar Patel
{"title":"HOW DOES ARTIFICIAL INTELLIGENCE HELP ASTRONOMY? A REVIEW","authors":"Manit Rajendrakumar Patel","doi":"10.53555/cse.v8i11.5427","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) is a discipline of computing that focuses mostly on transferring human intelligence and mental processes into machines that can assist humans in many ways. Machine learning (ML) is the approach of choice in AI for creating useful software for computer vision, speech recognition, natural language processing, robot control, and other applications. Some of the most common analyses of large, complicated and multidimensional data sets in astronomy can be performed by using ML methods. It can be used for automating observatory scheduling to increase the effective utilization and scientific return from telescopes. It is also used for image recognition, classification of galaxies and planet recognition. This paper offers an in-depth review of the evolution of artificial intelligence and the use of AI and ML in the field of astronomy, especially for data analysis, image recognition, astronomical scheduling, classification of galaxies and planet recognition. It adds to the existing literature on use of artificial intelligence for astronomical applications and is a useful resource for students and researchers.","PeriodicalId":130369,"journal":{"name":"IJRDO -Journal of Computer Science Engineering","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJRDO -Journal of Computer Science Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53555/cse.v8i11.5427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) is a discipline of computing that focuses mostly on transferring human intelligence and mental processes into machines that can assist humans in many ways. Machine learning (ML) is the approach of choice in AI for creating useful software for computer vision, speech recognition, natural language processing, robot control, and other applications. Some of the most common analyses of large, complicated and multidimensional data sets in astronomy can be performed by using ML methods. It can be used for automating observatory scheduling to increase the effective utilization and scientific return from telescopes. It is also used for image recognition, classification of galaxies and planet recognition. This paper offers an in-depth review of the evolution of artificial intelligence and the use of AI and ML in the field of astronomy, especially for data analysis, image recognition, astronomical scheduling, classification of galaxies and planet recognition. It adds to the existing literature on use of artificial intelligence for astronomical applications and is a useful resource for students and researchers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能如何帮助天文学?回顾
人工智能(AI)是一门计算学科,主要侧重于将人类的智能和心理过程转移到可以在许多方面帮助人类的机器上。机器学习(ML)是人工智能中为计算机视觉、语音识别、自然语言处理、机器人控制和其他应用程序创建有用软件的首选方法。天文学中一些最常见的大型、复杂和多维数据集的分析可以通过使用ML方法来执行。它可用于自动调度天文台,以提高望远镜的有效利用和科学回报。它还用于图像识别、星系分类和行星识别。本文对人工智能的发展以及人工智能和机器学习在天文学领域的应用进行了深入的综述,特别是在数据分析、图像识别、天文调度、星系分类和行星识别方面。它补充了现有的关于在天文学应用中使用人工智能的文献,对学生和研究人员来说是一个有用的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EFFICIENTLY UTILIZE THE SPECTRUM AND LOAD BALANCING IN COGNITIVE RADIO NETWORK USING GENETIC ALGORITHM WITH COVERSET PREDICTION MISE EN PLACE D'UN SYSTEME DISTRIBUE DE PUBLICATION DES CURSUS ACADEMIQUES DES ETUDIANTS A REVIEW ON WIRELESS NETWORK AND ELECTRONIC COMMUNICATION DEVELOPMENT OF AN EFFECTIVE SYSTEM FOR DETECTING CYBERCRIMES USING MODIFIED RIPPLE DOWN RULE SYSTEM AND NEURAL NETWORK. AUTOMATED PERSONALITY PREDICTIVE MODEL FOR E-RECRUITMENT USING LOGISTIC REGRESSION TECHNIQUE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1