P4Pir: in-network analysis for smart IoT gateways

Mingyuan Zang, Changgang Zheng, Radostin Stoyanov, L. Dittmann, Noa Zilberman
{"title":"P4Pir: in-network analysis for smart IoT gateways","authors":"Mingyuan Zang, Changgang Zheng, Radostin Stoyanov, L. Dittmann, Noa Zilberman","doi":"10.1145/3546037.3546060","DOIUrl":null,"url":null,"abstract":"IoT gateways are vital to the scalability and security of IoT networks. As more devices connect to the network, traditional hard-coded gateways fail to flexibly process diverse IoT traffic from highly dynamic devices. This calls for a more advanced analysis solution. In this work, we present P4Pir, an in-network traffic analysis solution for IoT gateways. It utilizes programmable data planes for in-band traffic learning with self-driven machine learning model updates. Preliminary results show that P4Pir can accurately detect emerging attacks based on retraining and updating the machine learning model.","PeriodicalId":351682,"journal":{"name":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546037.3546060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

IoT gateways are vital to the scalability and security of IoT networks. As more devices connect to the network, traditional hard-coded gateways fail to flexibly process diverse IoT traffic from highly dynamic devices. This calls for a more advanced analysis solution. In this work, we present P4Pir, an in-network traffic analysis solution for IoT gateways. It utilizes programmable data planes for in-band traffic learning with self-driven machine learning model updates. Preliminary results show that P4Pir can accurately detect emerging attacks based on retraining and updating the machine learning model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P4Pir:智能物联网网关的网内分析
物联网网关对物联网网络的可扩展性和安全性至关重要。随着越来越多的设备接入网络,传统的硬编码网关无法灵活处理来自高动态设备的各种物联网流量。这需要更高级的分析解决方案。在这项工作中,我们提出了P4Pir,一种物联网网关的网络内流量分析解决方案。它利用可编程数据平面进行带内流量学习,并具有自驱动的机器学习模型更新。初步结果表明,基于再训练和更新机器学习模型,P4Pir可以准确检测新出现的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oakestra Enabling IoT self-localization using ambient 5G mmWave signals RoMA: rotating MAC address for privacy protection Accelerating kubernetes with in-network caching TCP-INT: lightweight network telemetry with TCP transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1