Multidrug resistance: prospects for clinical management.

A Mansouri, K J Henle, W A Nagle
{"title":"Multidrug resistance: prospects for clinical management.","authors":"A Mansouri,&nbsp;K J Henle,&nbsp;W A Nagle","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical success in the treatment of tumors with chemotherapy has significantly improved over the past several years. However, treatment failures due to drug resistance of cancer cells has remained a major problem. The classical form of multiple drug resistance is perhaps also the most common type of drug resistance, and represents the overexpression of a transmembrane glycoprotein pump (P-170) that mediates the efflux of a spectrum of structurally and functionally unrelated drugs. Here, we discuss recent evidence that support the concept that the total phenomenon of multiple drug resistance (MDR) involves several other mechanisms in addition to that underlying \"classical\" MDR. These include the action of other energy-dependent membrane efflux pumps, elevated levels of GSH for drug conjugation and detoxification to facilitate export, enhanced DNA repair facility, gene amplification and oncogene activation. The combination of mechanisms used by any particular cell line is variable and suggests that many of these mechanisms are independent. Successful reversal of drug resistance appears to require the identification of relevant operative resistance mechanisms. An example is the competitive inhibition of P-170 with verapamil, quinine and tamoxifen. A broadly successful strategy for killing drug-resistant cancer cells, however, could be based on either selective energy depletion of cancer cells or the permeabilization of tumor cells with an effective bypass of efflux pumps, since many mechanisms of drug resistance entail the energy-dependent export of toxins. The latter approach may be achieved via membrane lipid modifications or the introduction of membrane pores by biological or physical (electroporation) means.</p>","PeriodicalId":77373,"journal":{"name":"SAAS bulletin, biochemistry and biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAAS bulletin, biochemistry and biotechnology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical success in the treatment of tumors with chemotherapy has significantly improved over the past several years. However, treatment failures due to drug resistance of cancer cells has remained a major problem. The classical form of multiple drug resistance is perhaps also the most common type of drug resistance, and represents the overexpression of a transmembrane glycoprotein pump (P-170) that mediates the efflux of a spectrum of structurally and functionally unrelated drugs. Here, we discuss recent evidence that support the concept that the total phenomenon of multiple drug resistance (MDR) involves several other mechanisms in addition to that underlying "classical" MDR. These include the action of other energy-dependent membrane efflux pumps, elevated levels of GSH for drug conjugation and detoxification to facilitate export, enhanced DNA repair facility, gene amplification and oncogene activation. The combination of mechanisms used by any particular cell line is variable and suggests that many of these mechanisms are independent. Successful reversal of drug resistance appears to require the identification of relevant operative resistance mechanisms. An example is the competitive inhibition of P-170 with verapamil, quinine and tamoxifen. A broadly successful strategy for killing drug-resistant cancer cells, however, could be based on either selective energy depletion of cancer cells or the permeabilization of tumor cells with an effective bypass of efflux pumps, since many mechanisms of drug resistance entail the energy-dependent export of toxins. The latter approach may be achieved via membrane lipid modifications or the introduction of membrane pores by biological or physical (electroporation) means.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多药耐药:临床治疗前景。
在过去几年中,肿瘤化疗的临床成功率有了显著提高。然而,由于癌细胞的耐药性导致的治疗失败仍然是一个主要问题。多重耐药的经典形式可能也是最常见的耐药类型,它代表了跨膜糖蛋白泵(P-170)的过表达,该泵介导一系列结构和功能不相关的药物的外排。在这里,我们讨论了最近的证据,这些证据支持这种概念,即除了潜在的“经典”MDR之外,多重耐药(MDR)的总体现象还涉及其他几种机制。这些包括其他能量依赖的膜外排泵的作用,提高谷胱甘肽水平用于药物偶联和解毒以促进出口,增强DNA修复设施,基因扩增和癌基因激活。任何特定细胞系使用的机制组合是可变的,并且表明许多这些机制是独立的。成功逆转耐药性似乎需要确定相关的手术耐药机制。一个例子是维拉帕米、奎宁和他莫西芬对P-170的竞争性抑制。然而,杀死耐药癌细胞的一种广泛成功的策略可能是基于癌细胞的选择性能量消耗或肿瘤细胞的渗透,有效绕过外排泵,因为许多耐药机制都需要依赖能量的毒素输出。后一种方法可以通过膜脂修饰或通过生物或物理(电穿孔)手段引入膜孔来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasticity of cardiovascular nucleoside transporters following chronic dipyridamole treatment. Genetic manipulation of anaerobic cellulolytic bacteria. Bombyxin: an insect neurohormone targets the ovaries in Lepidoptera. Genetic approaches to biochemical questions: insights into the functional requirements of proline 185 in the active site of human galactose-1-phosphate uridylyltransferase. Structure of the Haemophilus influenzae uvr-1+ gene: homology with other uvrC-like genes and characterization of the Haemophilus influenzae uvr-1 and uvr-2 mutations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1