Global numerical optimization using multi-agent genetic algorithm

Zhong Wei-cai, Liu Jing, Xu Mingzhi, Jiao Licheng
{"title":"Global numerical optimization using multi-agent genetic algorithm","authors":"Zhong Wei-cai, Liu Jing, Xu Mingzhi, Jiao Licheng","doi":"10.1109/ICCIMA.2003.1238119","DOIUrl":null,"url":null,"abstract":"A new algorithm, Multi-Agent Genetic Algorithm (MAGA), is proposed. It realizes the complex global numerical optimization via agent-agent interactions. All agents are fixed on a lattice, and they will compete or cooperate with their neighbors to increase their own energy. On the other hand, agents can also increase their energy with knowledge. In experiments, 4 multimodal benchmark functions are used to explore the effect of problem of problem dimension on the performance of MAGA. The results on functions with 20/spl sim/10,000 dimensions show that MAGA obtains good performance in solving high dimensional functions. Even when dimension is as high as 10,000, MAGA can still find high quality solutions with very low computational cost.","PeriodicalId":385362,"journal":{"name":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2003.1238119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A new algorithm, Multi-Agent Genetic Algorithm (MAGA), is proposed. It realizes the complex global numerical optimization via agent-agent interactions. All agents are fixed on a lattice, and they will compete or cooperate with their neighbors to increase their own energy. On the other hand, agents can also increase their energy with knowledge. In experiments, 4 multimodal benchmark functions are used to explore the effect of problem of problem dimension on the performance of MAGA. The results on functions with 20/spl sim/10,000 dimensions show that MAGA obtains good performance in solving high dimensional functions. Even when dimension is as high as 10,000, MAGA can still find high quality solutions with very low computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多智能体遗传算法的全局数值优化
提出了一种新的算法——多智能体遗传算法。它通过agent-agent交互实现复杂的全局数值优化。所有的智能体都固定在一个格子上,它们会与邻居竞争或合作来增加自己的能量。另一方面,agent也可以通过知识来增加自己的能量。在实验中,使用4个多模态基准函数来探索问题维数问题对MAGA性能的影响。在20/spl sim/ 10000维的函数上的结果表明,MAGA在求解高维函数时获得了良好的性能。即使当维度高达10,000时,MAGA仍然可以以非常低的计算成本找到高质量的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An algorithm of estimating the generalization performance of RBF-SVM Multi-targets for high-resolution range profile of radar based on fuzzy support vector machine The design and implement of Internet intelligence agent in electronic commerce environment [implement read implementation] [intelligence read intelligent] Scene change detection based on audio and video content analysis Fingerprint verification using wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1