CRF Based Region Classification Using Spatial Prototypes

M. Jahangiri, D. Heesch, M. Petrou
{"title":"CRF Based Region Classification Using Spatial Prototypes","authors":"M. Jahangiri, D. Heesch, M. Petrou","doi":"10.1109/DICTA.2010.92","DOIUrl":null,"url":null,"abstract":"This paper proposes a probabilistic model using conditional random field (CRF) for region labelling that encodes and exploits the spatial context of a region. Potential functions for a region depend on a combination of the labels of neighbouring regions as well as their relative location, and a set of typical neighbourhood configurations or prototypes. These are obtained by clustering neighbourhood configurations obtained from a set of annotated images. Inference is achieved by minimising the cost function defined over the CRF model using standard Markov Chain Monte Carlo (MCMC) technique. We validate our approach on a dataset of hand segmented and labelled images of buildings and show that the model outperforms similar such models that utilise either only contextual information or only non-contextual measures.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a probabilistic model using conditional random field (CRF) for region labelling that encodes and exploits the spatial context of a region. Potential functions for a region depend on a combination of the labels of neighbouring regions as well as their relative location, and a set of typical neighbourhood configurations or prototypes. These are obtained by clustering neighbourhood configurations obtained from a set of annotated images. Inference is achieved by minimising the cost function defined over the CRF model using standard Markov Chain Monte Carlo (MCMC) technique. We validate our approach on a dataset of hand segmented and labelled images of buildings and show that the model outperforms similar such models that utilise either only contextual information or only non-contextual measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CRF的空间原型区域分类
本文提出了一种利用条件随机场(CRF)进行区域标记的概率模型,该模型对区域的空间上下文进行编码和利用。一个区域的潜在函数依赖于相邻区域的标签及其相对位置的组合,以及一组典型的邻居配置或原型。这些是通过聚类从一组注释图像中获得的邻域配置获得的。通过使用标准马尔可夫链蒙特卡罗(MCMC)技术最小化定义在CRF模型上的成本函数来实现推理。我们在手工分割和标记的建筑物图像数据集上验证了我们的方法,并表明该模型优于仅使用上下文信息或仅使用非上下文度量的类似模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1