Unsupervised linear unmixing for change detection in multitemporal airborne hyperspectral imagery

Q. Du, L. Wasson, R. King
{"title":"Unsupervised linear unmixing for change detection in multitemporal airborne hyperspectral imagery","authors":"Q. Du, L. Wasson, R. King","doi":"10.1109/AMTRSI.2005.1469856","DOIUrl":null,"url":null,"abstract":"The linear unmixing technique is investigated for change detection in multitemporal airborne hyperspectral imagery. Several practical implementation issues are discussed. The preliminary study using the CASI data shows its feasibility when the noise level is moderate and some prior information about endmembers is known. Keywords— linear mixture model; unsupervised linear unmixing; change detection; multitemporal airborne hyperspectral imagery.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMTRSI.2005.1469856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

The linear unmixing technique is investigated for change detection in multitemporal airborne hyperspectral imagery. Several practical implementation issues are discussed. The preliminary study using the CASI data shows its feasibility when the noise level is moderate and some prior information about endmembers is known. Keywords— linear mixture model; unsupervised linear unmixing; change detection; multitemporal airborne hyperspectral imagery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多时相航空高光谱图像变化检测的无监督线性解混
研究了多时相航空高光谱图像的线性解混变化检测技术。讨论了几个实际实施问题。利用CASI数据进行的初步研究表明,在噪声水平适中、端元先验信息已知的情况下,该方法是可行的。关键词:线性混合模型;无监督线性分解;变化检测;多时相航空高光谱图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mined sand dune revegetation sequence in Myall Lakes, N.S.W., Australia Temporal signatures and harmonic analysis of natural and anthropogenic disturbances of forested landscapes: a case study in the Yellowstone region Development of indicators of burning efficiency based on time series of SPOT VEGETATION data Multitemporal analysis of NDVI and land surface temperature for modeling the probability of forest fire occurrence in central Mexico Post-classification digital change detection analysis of a temperate forest in the southwest basin of Mexico City, in a 16-year span
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1