A Clustering-based Approach for Topic Modeling via Word Network Analysis

Gulmira Tolegen, Alymzhan Toleu, R. Mussabayev, Alexander Krassovitskiy
{"title":"A Clustering-based Approach for Topic Modeling via Word Network Analysis","authors":"Gulmira Tolegen, Alymzhan Toleu, R. Mussabayev, Alexander Krassovitskiy","doi":"10.1109/UBMK55850.2022.9919530","DOIUrl":null,"url":null,"abstract":"This paper presents a clustering-based approach to topic modeling via analyzing word networks based on the adaptation of a community detection algorithm. Word networks are constructed with different word representations, and two types of topic assignments are introduced. Topic coherence score and the document clustering results are reported for topic model evaluation. Experimental results showed that it achieved comparable results with the current best. It also showed that the proposed approach produced a higher performance as the number of most relevant words gets larger in $C_{cv}$ coherence score.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a clustering-based approach to topic modeling via analyzing word networks based on the adaptation of a community detection algorithm. Word networks are constructed with different word representations, and two types of topic assignments are introduced. Topic coherence score and the document clustering results are reported for topic model evaluation. Experimental results showed that it achieved comparable results with the current best. It also showed that the proposed approach produced a higher performance as the number of most relevant words gets larger in $C_{cv}$ coherence score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类的词网络主题建模方法
本文提出了一种基于聚类的主题建模方法,该方法通过对词网络的分析,对社区检测算法进行了改进。用不同的词表示构建词网络,并介绍了两种类型的主题分配。报告主题一致性评分和文档聚类结果,用于主题模型评估。实验结果表明,该方法达到了与目前最佳方法相当的效果。研究还表明,随着$C_{cv}$连贯分数中最相关词的数量增加,所提出的方法产生了更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on Power and Energy Measurement of NVIDIA Jetson Embedded GPUs Using Built-in Sensor Forecasting the Short-Term Electricity In Steel Manufacturing For Purchase Accuracy on Day-Ahead Market Adaptive Slot-Filling for Turkish Natural Language Understanding Design and Implementation of Basic Log Structured File System for Internal Flash on Embedded Systems Toolset of “Turkic Morpheme” Portal for Creation of Electronic Corpora of Turkic Languages in a Unified Conceptual Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1