Prediction of Rooftop Photovoltaic Power Generation Using Artificial Neural Network

Yun Nee Wee, A. Nor
{"title":"Prediction of Rooftop Photovoltaic Power Generation Using Artificial Neural Network","authors":"Yun Nee Wee, A. Nor","doi":"10.1109/SCOReD50371.2020.9250952","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) system is known as one of the most popular renewable energy types in generating electricity power. However, one of the drawbacks of PV system is that the performance of PV panel output is incompatible and affected due to changing climate condition. Hence, it is important to predict the optimal power output of PV system. This study will cover the implementation of PV system at the rooftop of Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia. Then, the optimal PV output power on the rooftop will be predicted using calculation method and Artificial Neural Network (ANN). The results have shown that ANN has the ability to predict the PV output close to the calculation method.","PeriodicalId":142867,"journal":{"name":"2020 IEEE Student Conference on Research and Development (SCOReD)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCOReD50371.2020.9250952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Photovoltaic (PV) system is known as one of the most popular renewable energy types in generating electricity power. However, one of the drawbacks of PV system is that the performance of PV panel output is incompatible and affected due to changing climate condition. Hence, it is important to predict the optimal power output of PV system. This study will cover the implementation of PV system at the rooftop of Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia. Then, the optimal PV output power on the rooftop will be predicted using calculation method and Artificial Neural Network (ANN). The results have shown that ANN has the ability to predict the PV output close to the calculation method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的屋顶光伏发电预测
光伏(PV)系统被认为是最受欢迎的可再生能源发电类型之一。然而,光伏系统的缺点之一是光伏板输出性能不兼容,且受气候条件变化的影响。因此,对光伏发电系统的最优输出功率进行预测是十分重要的。本研究将涵盖在马来西亚敦胡赛因大学电气与电子工程学院屋顶的光伏系统的实施。然后,屋顶上的最佳光伏输出功率将预测使用的计算方法和人工神经网络(ANN)。结果表明,人工神经网络具有接近计算方法的PV输出预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the Performance of Smart Inverter Functionalities in PV-Rich LV Distribution Networks Simulation of Temporal Correlation Detection using HfO2-Based ReRAM Arrays Design and Development of a Quadcopter for Landmine Detection A Waste Recycling System for a Better Living World Study for Microstrip Patch Antenna for 5G Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1