Distributed Parellel MOEA/D on Spark

W. Ying, Shiyun Chen, Bingshen Wu, Yuehong Xie, Yu Wu
{"title":"Distributed Parellel MOEA/D on Spark","authors":"W. Ying, Shiyun Chen, Bingshen Wu, Yuehong Xie, Yu Wu","doi":"10.1109/CIIS.2017.12","DOIUrl":null,"url":null,"abstract":"The multi-objective evolutionary algorithm based on decomposition (MOEA/D) has shown remarkable performance for multi-objective optimization problems (MOPs). However, MOEA/D still consumes long time to solve MOPs with computationally intensive objective functions. This paper proposes two distributed parallel MOEA/Ds based on the popular distributed framework, Spark, to further reduce the running time of the sequential MOEA/D for MOPs. The first entirely evolved MOEA/D evolves an entire population, while the second partially evolved MOEA/D based on Spark evolves a partial subpopulation equal in size to a partition in each transformation-action process. Experimental results on DTLZ benchmark MOPs with three objectives indicate that both distributed MOEA/Ds on Spark obtains better speedup than the distributed MOEA/Ds on MapReduce and achieve the quality of solutions similar to the sequential MOEA/D.","PeriodicalId":254342,"journal":{"name":"2017 International Conference on Computing Intelligence and Information System (CIIS)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing Intelligence and Information System (CIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIS.2017.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The multi-objective evolutionary algorithm based on decomposition (MOEA/D) has shown remarkable performance for multi-objective optimization problems (MOPs). However, MOEA/D still consumes long time to solve MOPs with computationally intensive objective functions. This paper proposes two distributed parallel MOEA/Ds based on the popular distributed framework, Spark, to further reduce the running time of the sequential MOEA/D for MOPs. The first entirely evolved MOEA/D evolves an entire population, while the second partially evolved MOEA/D based on Spark evolves a partial subpopulation equal in size to a partition in each transformation-action process. Experimental results on DTLZ benchmark MOPs with three objectives indicate that both distributed MOEA/Ds on Spark obtains better speedup than the distributed MOEA/Ds on MapReduce and achieve the quality of solutions similar to the sequential MOEA/D.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Spark的分布式并行MOEA/D
基于分解的多目标进化算法(MOEA/D)在多目标优化问题(MOPs)中表现出了显著的性能。然而,MOEA/D在求解具有计算密集型目标函数的MOPs时仍然需要耗费较长的时间。本文提出了两种基于流行的分布式框架Spark的分布式并行MOEA/D,以进一步减少mop的顺序MOEA/D的运行时间。第一个完全进化的MOEA/D进化出了一个完整的种群,而第二个基于Spark的部分进化的MOEA/D则在每个转换操作过程中进化出一个与分区大小相等的部分子种群。在三目标DTLZ基准MOPs上的实验结果表明,Spark上的分布式MOEA/D都比MapReduce上的分布式MOEA/D获得了更好的加速,并且获得了与顺序MOEA/D相似的解决方案质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network Traffic Anomaly Detection Based on Dynamic Programming Study on the Robustness Based on PID Fuzzy Controller The Best Performance Evaluation of Encryption Algorithms to Reduce Power Consumption in WSN Non-redundant Distributed Database Allocation Technology Research Research and Implementation Based on Three-Dimensional Model Watermarking Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1