Assessing uncertainty about parameter estimates with incomplete repeated ordinal data

Claudio J. Verzilli, J. Carpenter
{"title":"Assessing uncertainty about parameter estimates with incomplete repeated ordinal data","authors":"Claudio J. Verzilli, J. Carpenter","doi":"10.1191/1471082x02st033oa","DOIUrl":null,"url":null,"abstract":"Data collected in clinical trials involving follow-up of patients over a period of time will almost inevitably be incomplete. Patients will fail to turn up at some of the intended measurement times or will not complete the study, giving rise to various patterns of missingness. In these circumstances, the validity of the conclusions drawn from an analysis of available cases depends crucially on the mechanism driving the missing data process; this in turn cannot be known for certain. For incomplete categorical data, various authors have recently proposed taking into account in a systematic way the ignorance caused by incomplete data. In particular, the idea of intervals of ignorance has been introduced, whereby point estimates for parameters of interest are replaced by intervals or regions of ignorance (Vansteelandt and Goetghebeur, 2001; Kenward et al., 2001; Molenberghs et al., 2001). These are identified by the set of estimates corresponding to possible outcomes for the missing data under little or no assumptions about the missing data mechanism. Here we extend this idea to incomplete repeated ordinal data. We describe a modified version of standard algorithms used for fitting marginal models to longitudinal categorical data, which enables calculation of intervals of ignorance for the parameters of interest. The ideas are illustrated using dental pain measurements from a longitudinal clinical trial.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"1990 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082x02st033oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Data collected in clinical trials involving follow-up of patients over a period of time will almost inevitably be incomplete. Patients will fail to turn up at some of the intended measurement times or will not complete the study, giving rise to various patterns of missingness. In these circumstances, the validity of the conclusions drawn from an analysis of available cases depends crucially on the mechanism driving the missing data process; this in turn cannot be known for certain. For incomplete categorical data, various authors have recently proposed taking into account in a systematic way the ignorance caused by incomplete data. In particular, the idea of intervals of ignorance has been introduced, whereby point estimates for parameters of interest are replaced by intervals or regions of ignorance (Vansteelandt and Goetghebeur, 2001; Kenward et al., 2001; Molenberghs et al., 2001). These are identified by the set of estimates corresponding to possible outcomes for the missing data under little or no assumptions about the missing data mechanism. Here we extend this idea to incomplete repeated ordinal data. We describe a modified version of standard algorithms used for fitting marginal models to longitudinal categorical data, which enables calculation of intervals of ignorance for the parameters of interest. The ideas are illustrated using dental pain measurements from a longitudinal clinical trial.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用不完全重复有序数据评估参数估计的不确定性
在临床试验中收集的数据涉及一段时间内对患者的随访,几乎不可避免地是不完整的。患者将无法在某些预定的测量时间出现或无法完成研究,从而产生各种类型的缺失。在这种情况下,从现有案例分析中得出的结论的有效性主要取决于驱动缺失数据处理的机制;这反过来又不能确定。对于不完整的分类数据,最近有许多作者提出要系统地考虑不完整数据所造成的无知。特别是,引入了无知区间的概念,即对感兴趣参数的点估计被无知区间或区域所取代(Vansteelandt和Goetghebeur, 2001;Kenward et al., 2001;Molenberghs et al., 2001)。在对缺失数据机制很少或没有假设的情况下,通过一组与缺失数据的可能结果相对应的估计来识别这些数据。这里我们把这个思想扩展到不完全重复有序数据。我们描述了用于拟合边缘模型到纵向分类数据的标准算法的修改版本,它可以计算感兴趣参数的忽略区间。这些想法是用纵向临床试验的牙痛测量来说明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1