Exploring Visual Attention and Machine Learning in 3D Visualization of Medical Temporal Data

Leonardo Souza Silva, R. V. Aranha, Matheus A. O. Ribeiro, L. R. Nakamura, Fátima L. S. Nunes
{"title":"Exploring Visual Attention and Machine Learning in 3D Visualization of Medical Temporal Data","authors":"Leonardo Souza Silva, R. V. Aranha, Matheus A. O. Ribeiro, L. R. Nakamura, Fátima L. S. Nunes","doi":"10.1109/CBMS49503.2020.00035","DOIUrl":null,"url":null,"abstract":"Temporal data visualization supports planning and decision-making processes as it helps understanding patterns and relationships among time-based data. In the Healthcare area, the anamnesis procedure offers to physicians a large volume of valuable information, which is usually analyzed considering temporal aspects. Contributing to overcome the limited use of three-dimensional (3D) space, in this article we present a VR approach named 3D Block ARL to support interactive visualization of medical temporal data where the interface design is based on VA concepts. Additionally, we use a rule-based learning method to associate users' preferences to graphical elements aiming to personalize the proposed 3D visualization interface. Our results indicate that VA can be a valuable resource to improve the design of Information Visualization interface tools in the context of temporal medical data as well as to personalize the visualizations according to the preferences of users.","PeriodicalId":121059,"journal":{"name":"2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS49503.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Temporal data visualization supports planning and decision-making processes as it helps understanding patterns and relationships among time-based data. In the Healthcare area, the anamnesis procedure offers to physicians a large volume of valuable information, which is usually analyzed considering temporal aspects. Contributing to overcome the limited use of three-dimensional (3D) space, in this article we present a VR approach named 3D Block ARL to support interactive visualization of medical temporal data where the interface design is based on VA concepts. Additionally, we use a rule-based learning method to associate users' preferences to graphical elements aiming to personalize the proposed 3D visualization interface. Our results indicate that VA can be a valuable resource to improve the design of Information Visualization interface tools in the context of temporal medical data as well as to personalize the visualizations according to the preferences of users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索视觉注意和机器学习在医学时间数据三维可视化中的应用
时态数据可视化支持规划和决策过程,因为它有助于理解基于时间的数据之间的模式和关系。在医疗保健领域,记忆程序为医生提供了大量有价值的信息,这些信息通常从时间方面进行分析。为了克服三维空间的有限使用,本文提出了一种名为3D Block ARL的VR方法,以支持医学时间数据的交互式可视化,其中界面设计基于虚拟现实概念。此外,我们使用基于规则的学习方法将用户的偏好与图形元素相关联,旨在个性化所提出的3D可视化界面。我们的研究结果表明,在实时医疗数据的背景下,VA可以作为一个有价值的资源来改进信息可视化界面工具的设计,并根据用户的偏好个性化可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Virtual Assistant for Cybersickness Care Image Classification of Cyanobacteria Microcystis Aeruginosa in raw Water Samples in Curitiba's Region Enrich Rare Disease Phenotypic Characterizations via a Graph Convolutional Network Based Recommendation System A Clustering Framework for Patient Phenotyping with Application to Adverse Drug Events DermaDL: Advanced Convolutional Neural Networks for Automated Melanoma Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1