Learning in Presence of Ontology Mapping Errors

Neeraj Koul, V. Honavar
{"title":"Learning in Presence of Ontology Mapping Errors","authors":"Neeraj Koul, V. Honavar","doi":"10.1109/WI-IAT.2010.138","DOIUrl":null,"url":null,"abstract":"The widespread use of ontologies to associate semantics with data has resulted in a growing interest in the problem of learning predictive models from data sources that use different ontologies to model the same underlying domain (world of interest). Learning from such \\emph{semantically disparate} data sources involves the use of a mapping to resolve semantic disparity among the ontologies used. Often, in practice, the mapping used to resolve the disparity may contain errors and as such the learning algorithms used in such a setting must be robust in presence of mapping errors. We reduce the problem of learning from semantically disparate data sources in the presence of mapping errors to a variant of the problem of learning in the presence of nasty classification noise. This reduction allows us to transfer theoretical results and algorithms from the latter to the former.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The widespread use of ontologies to associate semantics with data has resulted in a growing interest in the problem of learning predictive models from data sources that use different ontologies to model the same underlying domain (world of interest). Learning from such \emph{semantically disparate} data sources involves the use of a mapping to resolve semantic disparity among the ontologies used. Often, in practice, the mapping used to resolve the disparity may contain errors and as such the learning algorithms used in such a setting must be robust in presence of mapping errors. We reduce the problem of learning from semantically disparate data sources in the presence of mapping errors to a variant of the problem of learning in the presence of nasty classification noise. This reduction allows us to transfer theoretical results and algorithms from the latter to the former.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存在本体映射错误的学习
本体将语义与数据关联起来的广泛使用,导致人们对从数据源学习预测模型的问题越来越感兴趣,这些数据源使用不同的本体对相同的底层领域(感兴趣的世界)建模。从这种\emph{语义上完全不同}的数据源中学习涉及到使用映射来解决所使用的本体之间的语义差异。通常,在实践中,用于解决差异的映射可能包含错误,因此,在这种设置中使用的学习算法必须在存在映射错误的情况下具有鲁棒性。我们将在存在映射错误的情况下从语义不同的数据源中学习的问题减少为在存在严重分类噪声的情况下学习问题的变体。这种简化使我们能够将理论结果和算法从后者转移到前者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory for Security: Lessons Learned from Deployed Applications A Decision Rule Method for Assessing the Completeness and Consistency of a Data Warehouse Semantic Structure Content for Dynamic Web Pages Enhancing the Performance of Metadata Service for Cloud Computing Improving Diversity of Focused Summaries through the Negative Endorsements of Redundant Facts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1