Xilun Chen, L. Mathesen, Giulia Pedrielli, K. Candan
{"title":"Complicacy-Guided Parameter Space Sampling for Knowledge Discovery with Limited Simulation Budgets","authors":"Xilun Chen, L. Mathesen, Giulia Pedrielli, K. Candan","doi":"10.1109/ICBK.2019.00015","DOIUrl":null,"url":null,"abstract":"Knowledge discovery and decision making through data-and model-driven computer simulation ensembles are increasingly critical in many application domains. However, these simulation ensembles are expensive to obtain. Consequently, given a relatively small simulation budget, one needs to identify a sparse ensemble that includes the most informative simulations to help the effective exploration of the space of input parameters. In this paper, we propose a complicacy-guided parameter space sampling (CPSS) for knowledge discovery with limited simulation budgets, which relies on a novel complicacy-driven guidance mechanism to rank candidate models and a novel rank-stability based parameter space partitioning strategy to identify simulation instances to execute. The advantage of the proposed approach is that, unlike purely fit-based approaches, it avoids extensive simulations in difficult-to-fit regions of the parameter space, if the region can be explained with a much simpler model, requiring fewer simulation samples, even if with a slightly lower fit.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge discovery and decision making through data-and model-driven computer simulation ensembles are increasingly critical in many application domains. However, these simulation ensembles are expensive to obtain. Consequently, given a relatively small simulation budget, one needs to identify a sparse ensemble that includes the most informative simulations to help the effective exploration of the space of input parameters. In this paper, we propose a complicacy-guided parameter space sampling (CPSS) for knowledge discovery with limited simulation budgets, which relies on a novel complicacy-driven guidance mechanism to rank candidate models and a novel rank-stability based parameter space partitioning strategy to identify simulation instances to execute. The advantage of the proposed approach is that, unlike purely fit-based approaches, it avoids extensive simulations in difficult-to-fit regions of the parameter space, if the region can be explained with a much simpler model, requiring fewer simulation samples, even if with a slightly lower fit.