Random Forest profiling attack on advanced encryption standard

Hiren J. Patel, R. Baldwin
{"title":"Random Forest profiling attack on advanced encryption standard","authors":"Hiren J. Patel, R. Baldwin","doi":"10.1504/IJACT.2014.062740","DOIUrl":null,"url":null,"abstract":"Random Forest, a non-parametric classifier, is proposed for byte-wise profiling attack on advanced encryption standard AES and shown to improve results on PIC microcontrollers, especially in high-dimensional variable spaces. It is shown in this research that data collected from 40 PIC microcontrollers exhibited highly non-Gaussian variables. For the full-dimensional dataset consisting of 50,000 variables, Random Forest correctly extracted all 16 bytes of the AES key. For a reduced set of 2,700 variables captured during the first round of the encryption, Random Forest achieved success rates as high as 100% for cross-device attacks on 40 PIC microcontrollers from four different device families. With further dimensionality reduction, Random Forest still outperformed classical template attack for this dataset, requiring fewer traces and achieving higher success rates with lower misclassification rate. The importance of analysing the system noise in choosing a classifier for profiling attack is examined and demonstrated through this work.","PeriodicalId":350332,"journal":{"name":"Int. J. Appl. Cryptogr.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Cryptogr.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJACT.2014.062740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Random Forest, a non-parametric classifier, is proposed for byte-wise profiling attack on advanced encryption standard AES and shown to improve results on PIC microcontrollers, especially in high-dimensional variable spaces. It is shown in this research that data collected from 40 PIC microcontrollers exhibited highly non-Gaussian variables. For the full-dimensional dataset consisting of 50,000 variables, Random Forest correctly extracted all 16 bytes of the AES key. For a reduced set of 2,700 variables captured during the first round of the encryption, Random Forest achieved success rates as high as 100% for cross-device attacks on 40 PIC microcontrollers from four different device families. With further dimensionality reduction, Random Forest still outperformed classical template attack for this dataset, requiring fewer traces and achieving higher success rates with lower misclassification rate. The importance of analysing the system noise in choosing a classifier for profiling attack is examined and demonstrated through this work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机森林分析攻击高级加密标准
随机森林,一种非参数分类器,被提出用于高级加密标准AES的逐字节分析攻击,并被证明可以改善PIC微控制器的结果,特别是在高维变量空间中。本研究表明,从40个PIC微控制器收集的数据显示出高度非高斯变量。对于包含50,000个变量的全维数据集,Random Forest正确提取了AES密钥的所有16个字节。对于在第一轮加密期间捕获的2700个变量的减少集,随机森林在来自四个不同设备系列的40个PIC微控制器的跨设备攻击中实现了高达100%的成功率。在进一步降维的情况下,对于该数据集,随机森林仍然优于经典模板攻击,需要更少的跟踪,获得更高的成功率和更低的误分类率。通过这项工作,研究和证明了分析系统噪声在选择分析攻击分类器中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic MDS diffusion layers with efficient software implementation Computing the optimal ate pairing over elliptic curves with embedding degrees 54 and 48 at the 256-bit security level Delegation-based conversion from CPA to CCA-secure predicate encryption Preventing fault attacks using fault randomisation with a case study on AES A new authenticated encryption technique for handling long ciphertexts in memory constrained devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1