Detection of head experts in social network

M. Radvanský, M. Kudelka, V. Snás̃el
{"title":"Detection of head experts in social network","authors":"M. Radvanský, M. Kudelka, V. Snás̃el","doi":"10.1109/CASoN.2012.6412384","DOIUrl":null,"url":null,"abstract":"This paper introduces a method for head expert identification in a social network based on local community detection and formal concept analysis. There are several methods for expert identification, but most of these methods try to find an expert for a particular area. In this paper, we propose a novel approach to identify a head expert. This person is in the background and most of the time he is working across different areas of research, and he can establish teams of experts for particular areas.","PeriodicalId":431370,"journal":{"name":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2012.6412384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a method for head expert identification in a social network based on local community detection and formal concept analysis. There are several methods for expert identification, but most of these methods try to find an expert for a particular area. In this paper, we propose a novel approach to identify a head expert. This person is in the background and most of the time he is working across different areas of research, and he can establish teams of experts for particular areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交网络中头部专家的检测
介绍了一种基于局部社区检测和形式概念分析的社会网络首领专家识别方法。鉴定专家的方法有几种,但大多数方法都试图找到某一特定领域的专家。本文提出了一种识别首席专家的新方法。这个人在后台,大多数时候他在不同的研究领域工作,他可以为特定领域建立专家团队。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting Optimum-Path Forest clustering through harmony Search and its applications for intrusion detection in computer networks Graph-based cross-validated committees ensembles Automatic sentiment analysis of Twitter messages Identifying focal patterns in social networks Ontology-based Negotiation of security requirements in cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1