Android Malware Variant Detection by Comparing Traditional Antivirus

Mahamat Hassan, I. Sogukpinar
{"title":"Android Malware Variant Detection by Comparing Traditional Antivirus","authors":"Mahamat Hassan, I. Sogukpinar","doi":"10.1109/UBMK55850.2022.9919458","DOIUrl":null,"url":null,"abstract":"Android is gradually becoming malware targeting it. According to the recent Symantec threat reports, the number of newly discovered mobile malware variants grew by 54% from 2016 to 2017. Malware writers used obfuscation techniques to create malware variants to evade detection by some tools detections or antivirus companies. it is difficult for antivirus to detect the signature of these variants if the database does not update. It is, therefore, essential to explore new ways to prevent, detect and counter cyberattacks. In these detection mechanisms, machine learning uses to create classifiers that determine whether an application is dangerous or not. In the research, we focus on Android malware detection in Android APK. We analyze obfuscation techniques used by malware writers to create malware variants. We analyze permission and API Calls from Android APK. We compare techniques and how it is not easy for traditional antivirus to detect malware variants.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Android is gradually becoming malware targeting it. According to the recent Symantec threat reports, the number of newly discovered mobile malware variants grew by 54% from 2016 to 2017. Malware writers used obfuscation techniques to create malware variants to evade detection by some tools detections or antivirus companies. it is difficult for antivirus to detect the signature of these variants if the database does not update. It is, therefore, essential to explore new ways to prevent, detect and counter cyberattacks. In these detection mechanisms, machine learning uses to create classifiers that determine whether an application is dangerous or not. In the research, we focus on Android malware detection in Android APK. We analyze obfuscation techniques used by malware writers to create malware variants. We analyze permission and API Calls from Android APK. We compare techniques and how it is not easy for traditional antivirus to detect malware variants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较传统杀毒软件的Android恶意软件变体检测
Android正逐渐成为恶意软件的目标。根据赛门铁克最近的威胁报告,从2016年到2017年,新发现的移动恶意软件变种数量增长了54%。恶意软件编写者使用混淆技术来创建恶意软件变体,以逃避某些工具检测或反病毒公司的检测。如果数据库不更新,反病毒软件很难检测到这些变体的签名。因此,探索预防、检测和反击网络攻击的新方法至关重要。在这些检测机制中,机器学习用于创建分类器,以确定应用程序是否危险。在研究中,我们主要关注Android APK中的Android恶意软件检测。我们分析了恶意软件编写者用来创建恶意软件变体的混淆技术。我们分析了Android APK的权限和API调用。我们比较了技术和传统的反病毒如何不容易检测恶意软件变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on Power and Energy Measurement of NVIDIA Jetson Embedded GPUs Using Built-in Sensor Forecasting the Short-Term Electricity In Steel Manufacturing For Purchase Accuracy on Day-Ahead Market Adaptive Slot-Filling for Turkish Natural Language Understanding Design and Implementation of Basic Log Structured File System for Internal Flash on Embedded Systems Toolset of “Turkic Morpheme” Portal for Creation of Electronic Corpora of Turkic Languages in a Unified Conceptual Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1