Image Spam Filtering Using Visual Information

B. Biggio, G. Fumera, I. Pillai, F. Roli
{"title":"Image Spam Filtering Using Visual Information","authors":"B. Biggio, G. Fumera, I. Pillai, F. Roli","doi":"10.1109/ICIAP.2007.79","DOIUrl":null,"url":null,"abstract":"We address the problem of recognizing the so-called image spam, which consists in embedding the spam message into attached images to defeat techniques based on the analysis of e-mails' body text, and in using content obscuring techniques to defeat OCR tools. We propose an approach to recognize image spam based on detecting the presence of content obscuring techniques, and describe a possible implementation based on two low-level image features aimed at detecting obscuring techniques whose consequence is to compromise the OCR effectiveness resulting in character breaking or merging, or in the presence of noise interfering with characters in the binarized image. A preliminary experimental investigation of this approach is reported on a personal data set of spam images.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

We address the problem of recognizing the so-called image spam, which consists in embedding the spam message into attached images to defeat techniques based on the analysis of e-mails' body text, and in using content obscuring techniques to defeat OCR tools. We propose an approach to recognize image spam based on detecting the presence of content obscuring techniques, and describe a possible implementation based on two low-level image features aimed at detecting obscuring techniques whose consequence is to compromise the OCR effectiveness resulting in character breaking or merging, or in the presence of noise interfering with characters in the binarized image. A preliminary experimental investigation of this approach is reported on a personal data set of spam images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用视觉信息过滤图像垃圾邮件
我们解决了识别所谓的图像垃圾邮件的问题,这包括将垃圾邮件嵌入到附加图像中,以击败基于电子邮件正文分析的技术,并使用内容模糊技术来击败OCR工具。我们提出了一种基于检测内容模糊技术存在的识别图像垃圾的方法,并描述了一种基于两个低级图像特征的可能实现,旨在检测模糊技术,其后果是损害OCR有效性,导致字符破坏或合并,或者存在干扰二值化图像中字符的噪声。本文在一个垃圾图片的个人数据集上对该方法进行了初步实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time Gesture Recognition in Advanced Videocommunication Services Corner Displacement from Motion Blur A Method of Clustering Combination Applied to Satellite Image Analysis Sight enhancement through video fusion in a surveillance system Robust Iris Localization and Tracking based on Constrained Visual Fitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1