On Validation of Clustering Techniques for Bibliographic Databases

Sumit Mishra, S. Saha, S. Mondal
{"title":"On Validation of Clustering Techniques for Bibliographic Databases","authors":"Sumit Mishra, S. Saha, S. Mondal","doi":"10.1109/ICPR.2014.543","DOIUrl":null,"url":null,"abstract":"In entity name disambiguation, performance evaluation of any approach is difficult. This is due to the fact that correct or actual results are often not known. Generally for evaluation purpose, three measures namely precision, recall and f-measure are used. They all are external validity indices because they need golden standard data. But in Bibliographic databases like DBLP, Arnetminer, Scopus, Web of Science, Google Scholar, etc., gold standard data is not easily available and it is very difficult to obtain this due to the overlapping nature of data. So, there is a need to use some other matrices for evaluation purpose. In this paper, some internal cluster validity index based schemes are proposed for evaluating entity name disambiguation algorithms when applied on bibliographic data without using any gold standard datasets. Two new internal validity indices are also proposed in the current paper for this purpose. Experimental results shown on seven bibliographic datasets reveal that proposed internal cluster validity indices are able to compare the results obtained by different methods without prior/gold standard. Thus the present paper demonstrates a novel way of evaluating any entity matching algorithm for bibliographic datasets without using any prior/gold standard information.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In entity name disambiguation, performance evaluation of any approach is difficult. This is due to the fact that correct or actual results are often not known. Generally for evaluation purpose, three measures namely precision, recall and f-measure are used. They all are external validity indices because they need golden standard data. But in Bibliographic databases like DBLP, Arnetminer, Scopus, Web of Science, Google Scholar, etc., gold standard data is not easily available and it is very difficult to obtain this due to the overlapping nature of data. So, there is a need to use some other matrices for evaluation purpose. In this paper, some internal cluster validity index based schemes are proposed for evaluating entity name disambiguation algorithms when applied on bibliographic data without using any gold standard datasets. Two new internal validity indices are also proposed in the current paper for this purpose. Experimental results shown on seven bibliographic datasets reveal that proposed internal cluster validity indices are able to compare the results obtained by different methods without prior/gold standard. Thus the present paper demonstrates a novel way of evaluating any entity matching algorithm for bibliographic datasets without using any prior/gold standard information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
书目数据库聚类技术的验证
在实体名称消歧中,任何一种方法的性能评价都是困难的。这是因为正确或实际的结果往往是未知的。一般来说,为了评价目的,使用三个指标,即精度、召回率和f-measure。它们都是外部有效性指标,因为它们需要黄金标准数据。但在DBLP、Arnetminer、Scopus、Web of Science、Google Scholar等书目数据库中,黄金标准数据并不容易获得,而且由于数据的重叠性质,很难获得黄金标准数据。因此,有必要使用一些其他的矩阵来求值。本文在不使用任何金标准数据集的情况下,提出了一些基于内部聚类有效性索引的评价书目数据实体名消歧算法的方案。为此,本文还提出了两个新的内部效度指标。在7个文献数据集上的实验结果表明,本文提出的内部聚类效度指标能够比较不同方法的结果,而不需要先验标准或金标准。因此,本文展示了一种新的方法来评估书目数据集的任何实体匹配算法,而不使用任何先验/金标准信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1