Towards Reliable Colorectal Cancer Polyps Classification via Vision Based Tactile Sensing and Confidence-Calibrated Neural Networks

Siddhartha Kapuria, Tarunraj G. Mohanraj, Nethra Venkatayogi, Ozdemir Can Kara, Y. Hirata, P. Minot, Ariel Kapusta, N. Ikoma, F. Alambeigi
{"title":"Towards Reliable Colorectal Cancer Polyps Classification via Vision Based Tactile Sensing and Confidence-Calibrated Neural Networks","authors":"Siddhartha Kapuria, Tarunraj G. Mohanraj, Nethra Venkatayogi, Ozdemir Can Kara, Y. Hirata, P. Minot, Ariel Kapusta, N. Ikoma, F. Alambeigi","doi":"10.1109/ISMR57123.2023.10130197","DOIUrl":null,"url":null,"abstract":"In this study, toward addressing the over-confident outputs of existing artificial intelligence-based colorectal cancer (CRC) polyp classification techniques, we propose a confidence-calibrated residual neural network. Utilizing a novel vision-based tactile sensing (VS-TS) system and unique CRC polyp phantoms, we demonstrate that traditional metrics such as accuracy and precision are not sufficient to encapsulate model performance for handling a sensitive CRC polyp diagnosis. To this end, we develop a residual neural network classifier and address its over-confident outputs for CRC polyps classification via the post-processing method of temperature scaling. To evaluate the proposed method, we introduce noise and blur to the obtained textural images of the VSTS and test the model's reliability for non-ideal inputs through reliability diagrams and other statistical metrics.","PeriodicalId":276757,"journal":{"name":"2023 International Symposium on Medical Robotics (ISMR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Symposium on Medical Robotics (ISMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMR57123.2023.10130197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, toward addressing the over-confident outputs of existing artificial intelligence-based colorectal cancer (CRC) polyp classification techniques, we propose a confidence-calibrated residual neural network. Utilizing a novel vision-based tactile sensing (VS-TS) system and unique CRC polyp phantoms, we demonstrate that traditional metrics such as accuracy and precision are not sufficient to encapsulate model performance for handling a sensitive CRC polyp diagnosis. To this end, we develop a residual neural network classifier and address its over-confident outputs for CRC polyps classification via the post-processing method of temperature scaling. To evaluate the proposed method, we introduce noise and blur to the obtained textural images of the VSTS and test the model's reliability for non-ideal inputs through reliability diagrams and other statistical metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉触觉和置信度校准的神经网络对结直肠癌息肉的可靠分类
在本研究中,为了解决现有基于人工智能的结直肠癌(CRC)息肉分类技术的过度自信输出,我们提出了一个置信度校准的残差神经网络。利用一种新颖的基于视觉的触觉传感(VS-TS)系统和独特的CRC息肉幻象,我们证明了传统的指标,如准确性和精度不足以封装模型的性能,以处理敏感的CRC息肉诊断。为此,我们开发了一个残差神经网络分类器,并通过温度缩放的后处理方法解决了CRC息肉分类的过度自信输出。为了评估所提出的方法,我们在获得的VSTS纹理图像中引入噪声和模糊,并通过可靠性图和其他统计指标测试模型对非理想输入的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Preliminary Use Case for Socially Assistive Robot-Augmented Early Intervention with Clinical Stakeholders Towards in-utero Navigational Assistance: A Multi Task Neural Network for Segmentation and Pose Estimation in Fetoscopy cHand: Open Source Hand Posture Visualization in CHAI3D Koopman Operator-based Extended Kalman Filter for Cosserat Rod Wrench Estimation Deep Kernel and Image Quality Estimators for Optimizing Robotic Ultrasound Controller using Bayesian Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1