{"title":"Development of a small and transportable de-icing/anti-icing drone-mounted system. Part 1: System design","authors":"É. Villeneuve, E. Karmouch, Xavier Boulerice","doi":"10.1139/dsa-2021-0036","DOIUrl":null,"url":null,"abstract":"The icing of aircraft on the ground is an important flight safety issue. Aircraft must be de-iced and anti-iced to respectively remove and protect the aircraft from freezing and frozen contamination before and during takeoff. Winter de-icing and anti-icing operations are nonetheless costly, require a significant amount of time, and rely on extensive infrastructures. The essential equipment is often not available at smaller airports and remote locations, thereby preventing departures under a range of winter conditions. For sites located in northern Canada, this limitation results in frequent takeoff delays or cancellations during a significant portion of the year. As part of Canada’s Department of National Defence Innovation for Defence Excellence and Security research program, this study aimed to develop a practical solution to mitigate these limitations. This solution involves mounting a ground de-icing/anti-icing system onto a drone for an easy-to-operate system that can be readily acquired and stored at smaller airports and remote locations or even be transported within the aircraft itself to ensure the possibility of performing de-icing/anti-icing operations at sites lacking the standard infrastructure. This paper presents the conception and design of a drone-based system that will provide faster, greener, cheaper, and more effective winter operations at small and remote airports.","PeriodicalId":202289,"journal":{"name":"Drone Systems and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drone Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/dsa-2021-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The icing of aircraft on the ground is an important flight safety issue. Aircraft must be de-iced and anti-iced to respectively remove and protect the aircraft from freezing and frozen contamination before and during takeoff. Winter de-icing and anti-icing operations are nonetheless costly, require a significant amount of time, and rely on extensive infrastructures. The essential equipment is often not available at smaller airports and remote locations, thereby preventing departures under a range of winter conditions. For sites located in northern Canada, this limitation results in frequent takeoff delays or cancellations during a significant portion of the year. As part of Canada’s Department of National Defence Innovation for Defence Excellence and Security research program, this study aimed to develop a practical solution to mitigate these limitations. This solution involves mounting a ground de-icing/anti-icing system onto a drone for an easy-to-operate system that can be readily acquired and stored at smaller airports and remote locations or even be transported within the aircraft itself to ensure the possibility of performing de-icing/anti-icing operations at sites lacking the standard infrastructure. This paper presents the conception and design of a drone-based system that will provide faster, greener, cheaper, and more effective winter operations at small and remote airports.