{"title":"fsync-aware Multi-Buffer FTL for Improving the fsync Latency with Open-Channel SSDs","authors":"Somm Kim, Yunji Kang, Dongkun Shin","doi":"10.1109/NVMSA.2019.8863514","DOIUrl":null,"url":null,"abstract":"Open-Channel SSDs are widely studied because of their advantages such as predictable latency, efficient data placement, and I/O scheduling. Currently, the Linux kernel includes pblk (The Physical Block Device), a host FTL that supports Open-Channel SSDs. In addition, there are recent studies that expand the single-threaded architecture of pblk to multi-threaded architecture: MT-FTL and QBLK. However, both pblk and recent studies were designed without considering fsync latency. However, since the fsync system call is performed synchronously, has a great effect on the performance of the system. In this paper, we propose FA-FTL, which is a host FTL considering fsync latency. Experiments show that FA-FTL is 141% higher than pblk and 119% higher than MT-FTL.","PeriodicalId":438544,"journal":{"name":"2019 IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NVMSA.2019.8863514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Open-Channel SSDs are widely studied because of their advantages such as predictable latency, efficient data placement, and I/O scheduling. Currently, the Linux kernel includes pblk (The Physical Block Device), a host FTL that supports Open-Channel SSDs. In addition, there are recent studies that expand the single-threaded architecture of pblk to multi-threaded architecture: MT-FTL and QBLK. However, both pblk and recent studies were designed without considering fsync latency. However, since the fsync system call is performed synchronously, has a great effect on the performance of the system. In this paper, we propose FA-FTL, which is a host FTL considering fsync latency. Experiments show that FA-FTL is 141% higher than pblk and 119% higher than MT-FTL.