Scalable and Parameterizable Processor Array Architecture for Similarity Distance Computation

Awos Kanan, F. Gebali, Atef Ibrahim, K. F. Li
{"title":"Scalable and Parameterizable Processor Array Architecture for Similarity Distance Computation","authors":"Awos Kanan, F. Gebali, Atef Ibrahim, K. F. Li","doi":"10.1109/IACS.2019.8809140","DOIUrl":null,"url":null,"abstract":"Processor array architecture is a popular approach to improve computation of similarity distance matrices; however, most of the proposed architectures are designed in an ad hoc manner, some have not even considered dimensionality and size of the datasets. We believe a systematic approach is necessary to explore the design space. In this work, we present a technique for designing scalable processor array architecture for the similarity distance matrix computation. Implementation results of the proposed architecture show improved compromise between area and speed. Moreover, it scales better for large and high-dimensional datasets since the architecture is fully parameterized and only has to deal with one data dimension in each time step.","PeriodicalId":225697,"journal":{"name":"2019 10th International Conference on Information and Communication Systems (ICICS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2019.8809140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Processor array architecture is a popular approach to improve computation of similarity distance matrices; however, most of the proposed architectures are designed in an ad hoc manner, some have not even considered dimensionality and size of the datasets. We believe a systematic approach is necessary to explore the design space. In this work, we present a technique for designing scalable processor array architecture for the similarity distance matrix computation. Implementation results of the proposed architecture show improved compromise between area and speed. Moreover, it scales better for large and high-dimensional datasets since the architecture is fully parameterized and only has to deal with one data dimension in each time step.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于相似距离计算的可扩展和可参数化处理器阵列架构
处理器阵列结构是一种改进相似距离矩阵计算的常用方法;然而,大多数提出的体系结构都是以一种特别的方式设计的,有些甚至没有考虑数据集的维数和大小。我们相信系统的方法对于探索设计空间是必要的。在这项工作中,我们提出了一种用于相似距离矩阵计算的可扩展处理器阵列架构设计技术。该架构的实现结果表明,该架构在面积和速度之间取得了更好的折衷。此外,对于大型和高维数据集,它可以更好地扩展,因为该体系结构是完全参数化的,每个时间步只需要处理一个数据维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating patterns of emotion and expressions using smart learning spaces A Secure Collaborative Module on Distributed SDN RecDNNing: a recommender system using deep neural network with user and item embeddings Scheduling Different Types of Bag-of-Tasks Jobs in Distributed Systems Does Privacy Matters When We are Sick? An Extended Privacy Calculus Model for Healthcare Technology Adoption Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1