Trajectory Planning for Autonomous Vehicle Using Digital Map

Jure Bajić, M. Herceg, Ivan Resetar, I. Velikic
{"title":"Trajectory Planning for Autonomous Vehicle Using Digital Map","authors":"Jure Bajić, M. Herceg, Ivan Resetar, I. Velikic","doi":"10.1109/ZINC.2019.8769382","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm for autonomous vehicle trajectory planning is proposed. The proposed algorithm consists of two parts. In the first part, transformation of given coordinates from Cartesian system to Frenet-Serret system is applied, along with interpolation of points in trajectory. In the second part, most efficient trajectory is being chosen and optimized. The algorithm was developed in Udacity’s simulator, where it was tested and compared with other similar algorithms. The algorithm shows promising performance through testing.","PeriodicalId":190326,"journal":{"name":"2019 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC.2019.8769382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, an algorithm for autonomous vehicle trajectory planning is proposed. The proposed algorithm consists of two parts. In the first part, transformation of given coordinates from Cartesian system to Frenet-Serret system is applied, along with interpolation of points in trajectory. In the second part, most efficient trajectory is being chosen and optimized. The algorithm was developed in Udacity’s simulator, where it was tested and compared with other similar algorithms. The algorithm shows promising performance through testing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数字地图的自动驾驶汽车轨迹规划
本文提出了一种自动驾驶车辆轨迹规划算法。该算法由两部分组成。在第一部分中,将给定坐标从笛卡尔坐标系转换为弗莱内特-瑟雷特坐标系,并对轨迹中的点进行插值。在第二部分,选择和优化最有效的轨迹。该算法是在Udacity的模拟器中开发的,在那里进行了测试,并与其他类似算法进行了比较。经过测试,该算法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software solution stack for data transfer on a frame grabber platform Classification of Objects Detected by the Camera based on Convolutional Neural Network Design and development of a smart attendance management system with Bluetooth low energy beacons Automotive Vision Grabber: FPGA design, cameras and data transfer over PCIe Object detection and object tracking in front of the vehicle using front view camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1