Local detection of PMU measurement errors using dynamic state estimators

A. Rouhani, A. Abur
{"title":"Local detection of PMU measurement errors using dynamic state estimators","authors":"A. Rouhani, A. Abur","doi":"10.1109/ISGT.2017.8086047","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of a couple of local PMUs and associated dynamic state estimators in order to detect and remove bad data in PMU measurements. Distinguishing features of the proposed approach is that it facilitates detection of bad-data in local PMU measurements without requiring a system-wide state estimator. The proposed approach relies on a performance evaluation technique which computes the probability density function (pdf) of the residuals provided by a dynamic state estimator. In the proposed approach it is assumed that there are at least two local PMUs that provide measurements to the dynamic state estimators of a synchronous generator. The proposed approach is implemented using a two-axis model of a synchronous generator with IEEE-Type 1 exciter. The performance of the proposed approach is investigated in the presence of bad-data associated with the measurements provided by the PMUs.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8086047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes the use of a couple of local PMUs and associated dynamic state estimators in order to detect and remove bad data in PMU measurements. Distinguishing features of the proposed approach is that it facilitates detection of bad-data in local PMU measurements without requiring a system-wide state estimator. The proposed approach relies on a performance evaluation technique which computes the probability density function (pdf) of the residuals provided by a dynamic state estimator. In the proposed approach it is assumed that there are at least two local PMUs that provide measurements to the dynamic state estimators of a synchronous generator. The proposed approach is implemented using a two-axis model of a synchronous generator with IEEE-Type 1 exciter. The performance of the proposed approach is investigated in the presence of bad-data associated with the measurements provided by the PMUs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态估计器的PMU测量误差局部检测
为了检测和去除PMU测量中的不良数据,本文提出了使用一对局部PMU和相关的动态估计器。该方法的显著特点是,它有助于检测局部PMU测量中的坏数据,而不需要系统范围的状态估计器。所提出的方法依赖于一种性能评估技术,该技术计算由动态估计器提供的残差的概率密度函数(pdf)。在提出的方法中,假设至少有两个本地pmu为同步发电机的动态状态估计器提供测量。采用带ieee - 1型励磁器的同步发电机双轴模型实现了该方法。在与pmu提供的测量相关的坏数据存在的情况下,研究了所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cyber-physical resilience metric for smart grids Optimal allocation of photovoltaic systems and energy storage systems considering constraints of both transmission and distribution systems Stochastic dynamic power flow analysis based on stochastic response surfarce method and ARMA-GARCH model Towards the improvement of multi-objective evolutionary algorithms for service restoration Multi-level control framework for enhanced flexibility of active distribution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1