Social recommendation using speech recognition: Sharing TV scenes in social networks

Daniel Schneider, Sebastian Tschöpel, J. Schwenninger
{"title":"Social recommendation using speech recognition: Sharing TV scenes in social networks","authors":"Daniel Schneider, Sebastian Tschöpel, J. Schwenninger","doi":"10.1109/WIAMIS.2012.6226755","DOIUrl":null,"url":null,"abstract":"We describe a novel system which simplifies recommendation of video scenes in social networks, thereby attracting a new audience for existing video portals. Users can select interesting quotes from a speech recognition transcript, and share the corresponding video scene with their social circle with minimal effort. The system has been designed in close cooperation with the largest German public broadcaster (ARD), and was deployed at the broadcaster's public video portal. A twofold adaptation strategy adapts our speech recognition system to the given use case. First, a database of speaker-adapted acoustic models for the most important speakers in the corpus is created. We use spectral speaker identification for detecting whether one of these speakers is speaking, and select the corresponding model accordingly. Second, we apply language model adaptation by exploiting prior knowledge about the video category.","PeriodicalId":346777,"journal":{"name":"2012 13th International Workshop on Image Analysis for Multimedia Interactive Services","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2012.6226755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We describe a novel system which simplifies recommendation of video scenes in social networks, thereby attracting a new audience for existing video portals. Users can select interesting quotes from a speech recognition transcript, and share the corresponding video scene with their social circle with minimal effort. The system has been designed in close cooperation with the largest German public broadcaster (ARD), and was deployed at the broadcaster's public video portal. A twofold adaptation strategy adapts our speech recognition system to the given use case. First, a database of speaker-adapted acoustic models for the most important speakers in the corpus is created. We use spectral speaker identification for detecting whether one of these speakers is speaking, and select the corresponding model accordingly. Second, we apply language model adaptation by exploiting prior knowledge about the video category.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语音识别的社交推荐:在社交网络中分享电视场景
我们描述了一个新的系统,它简化了社交网络中视频场景的推荐,从而为现有的视频门户网站吸引了新的受众。用户可以从语音识别记录中选择有趣的语录,并毫不费力地将相应的视频场景分享到自己的社交圈。该系统是与德国最大的公共广播公司(ARD)密切合作设计的,并部署在该广播公司的公共视频门户网站上。双重适应策略使我们的语音识别系统适应给定的用例。首先,为语料库中最重要的说话者创建一个适合说话人的声学模型数据库。我们使用频谱扬声器识别来检测这些扬声器中的一个是否在说话,并相应地选择相应的模型。其次,利用视频类别的先验知识进行语言模型自适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An empirical study on the combination of surf features with VLAD vectors for image search Content-based analysis for accessing audiovisual archives: Alternatives for concept-based indexing and search Who are the users of a video search system? Classifying a heterogeneous group with a profile matrix Structural based side information creation with improved matching criteria for Wyner-Ziv video coding Field test of SkyMedia HD/3D content augmentation system for immersive media experiences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1