Error bounds on the Rayleigh approximation of the K-distribution

G. V. Weinberg
{"title":"Error bounds on the Rayleigh approximation of the K-distribution","authors":"G. V. Weinberg","doi":"10.1049/iet-spr.2014.0364","DOIUrl":null,"url":null,"abstract":"It is a well-known property in X-band maritime surveillance radar signal processing that the K-distribution limits to a Rayleigh as its shape parameter increases, justifying the Rayleigh approximation of the K-distribution in certain scenarios. In the analysis of real data, it has been observed that this approximation tends to be valid for shape parameters >20. Using Stein's method, it is possible to construct explicit bounds on the distributional differences to quantify this observation.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2014.0364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

It is a well-known property in X-band maritime surveillance radar signal processing that the K-distribution limits to a Rayleigh as its shape parameter increases, justifying the Rayleigh approximation of the K-distribution in certain scenarios. In the analysis of real data, it has been observed that this approximation tends to be valid for shape parameters >20. Using Stein's method, it is possible to construct explicit bounds on the distributional differences to quantify this observation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
k分布的瑞利近似的误差界
在x波段海上监视雷达信号处理中,k分布随着其形状参数的增加而限制于瑞利分布,这是一个众所周知的特性,在某些情况下证明了k分布的瑞利近似。在对实际数据的分析中,我们观察到,当形状参数>20时,这种近似趋于有效。使用Stein的方法,可以在分布差异上构建明确的界限来量化这一观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An order insensitive optimal generalised sequential fusion estimation for stochastic uncertain multi-sensor systems with correlated noise Spatial Multiplexing in Near Field MIMO Channels with Reconfigurable Intelligent Surfaces An improved segmentation technique for multilevel thresholding of crop image using cuckoo search algorithm based on recursive minimum cross entropy Advances in image processing using machine learning techniques An unsupervised monocular image depth prediction algorithm using Fourier domain analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1