An Insight into the Relevance of Word Ordering for Text Data Analysis

R. Menon, R. Akhil dev, Sreehari G Bhattathiri
{"title":"An Insight into the Relevance of Word Ordering for Text Data Analysis","authors":"R. Menon, R. Akhil dev, Sreehari G Bhattathiri","doi":"10.1109/ICCMC48092.2020.ICCMC-00040","DOIUrl":null,"url":null,"abstract":"Sentence ordering and word ordering is always remaining as a critical task for natural language processing applications. It is expected that introduction of word order information will lead to improvements in document related tasks like keyword extraction, context identification, topic analysis, intent identification, summary generation, document classification, sentiment analysis, clustering etc. In this paper, we are maintaining the structure of the document data by using various deep learning techniques. Most of the techniques can be compared on the basis of vector similarity. The proposed research work helps to improve the accuracy on the basis of the order of word occurrence. We also compare different types of word ordering techniques to maintain the structure of the document. The obtained results indicate that Doc2Vec model outperforms Tfidf model in terms of word order similarity.","PeriodicalId":130581,"journal":{"name":"2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sentence ordering and word ordering is always remaining as a critical task for natural language processing applications. It is expected that introduction of word order information will lead to improvements in document related tasks like keyword extraction, context identification, topic analysis, intent identification, summary generation, document classification, sentiment analysis, clustering etc. In this paper, we are maintaining the structure of the document data by using various deep learning techniques. Most of the techniques can be compared on the basis of vector similarity. The proposed research work helps to improve the accuracy on the basis of the order of word occurrence. We also compare different types of word ordering techniques to maintain the structure of the document. The obtained results indicate that Doc2Vec model outperforms Tfidf model in terms of word order similarity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对文本数据分析中词序相关性的洞察
句子排序和词排序一直是自然语言处理应用中的一个关键问题。语序信息的引入有望改善与文档相关的任务,如关键词提取、上下文识别、主题分析、意图识别、摘要生成、文档分类、情感分析、聚类等。在本文中,我们通过使用各种深度学习技术来维护文档数据的结构。大多数技术可以在向量相似性的基础上进行比较。本文提出的研究工作有助于提高基于单词出现顺序的准确性。我们还比较了维护文档结构的不同类型的单词排序技术。结果表明,Doc2Vec模型在词序相似度方面优于Tfidf模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Time Domain Features of Dysarthria Speech Tourism Recommendation System based on Knowledge Graph Feature Learning IoT systems based on SOA services: Methodologies, Challenges and Future directions Wildfire forecast within the districts of Kerala using Fuzzy and ANFIS A Review Study on the Multiple and Useful Application of Fiber Optic Illumination System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1