Controlling Consistency in Top-N Recommender Systems

P. Cremonesi, R. Turrin
{"title":"Controlling Consistency in Top-N Recommender Systems","authors":"P. Cremonesi, R. Turrin","doi":"10.1109/ICDMW.2010.65","DOIUrl":null,"url":null,"abstract":"Recommender systems have become essential navigational tools for users to surf through vast on-line catalogs. However, recommender algorithms are often tuned to improve accuracy, without paying any attention to the consistency of the recommendations when small changes happen to the user profile or to the model. Consistency of recommendations is closely related with user satisfaction and trust. In this work we analyze how small changes in either the user profile or the recommender model may affect the consistency of Top-N recommendation systems. We also design two mechanisms able to promote consistency without degrading accuracy and novelty of recommendations. Finally, we investigate the consistency of Top-N recommendation algorithms over time by analyzing real data from a production IPTV recommender system.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Recommender systems have become essential navigational tools for users to surf through vast on-line catalogs. However, recommender algorithms are often tuned to improve accuracy, without paying any attention to the consistency of the recommendations when small changes happen to the user profile or to the model. Consistency of recommendations is closely related with user satisfaction and trust. In this work we analyze how small changes in either the user profile or the recommender model may affect the consistency of Top-N recommendation systems. We also design two mechanisms able to promote consistency without degrading accuracy and novelty of recommendations. Finally, we investigate the consistency of Top-N recommendation algorithms over time by analyzing real data from a production IPTV recommender system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Top-N推荐系统的一致性控制
推荐系统已经成为用户浏览大量在线目录必不可少的导航工具。然而,当用户配置文件或模型发生微小变化时,推荐算法通常会调整以提高准确性,而不会注意推荐的一致性。推荐的一致性与用户满意度和信任度密切相关。在这项工作中,我们分析了用户配置文件或推荐模型的微小变化如何影响Top-N推荐系统的一致性。我们还设计了两种机制,能够在不降低推荐的准确性和新颖性的情况下提高一致性。最后,我们通过分析生产IPTV推荐系统的真实数据来研究Top-N推荐算法随时间的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1