Exploration of Language-Specific Self-Attention Parameters for Multilingual End-to-End Speech Recognition

Brady C. Houston, K. Kirchhoff
{"title":"Exploration of Language-Specific Self-Attention Parameters for Multilingual End-to-End Speech Recognition","authors":"Brady C. Houston, K. Kirchhoff","doi":"10.1109/SLT54892.2023.10022937","DOIUrl":null,"url":null,"abstract":"In the last several years, end-to-end (E2E) ASR models have mostly surpassed the performance of hybrid ASR models. E2E is particularly well suited to multilingual approaches because it doesn't require language-specific phone alignments for training. Recent work has improved multilingual E2E modeling over naive data pooling on up to several dozen languages by using both language-specific and language-universal model parameters, as well as providing information about the language being presented to the network. Complementary to previous work we analyze language-specific parameters in the attention mechanism of Conformer-based encoder models. We show that using language-specific parameters in the attention mechanism can improve performance across six languages by up to 12% compared to standard multilingual baselines and up to 36% compared to monolingual baselines, without requiring any additional parameters during monolingual inference nor fine-tuning.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the last several years, end-to-end (E2E) ASR models have mostly surpassed the performance of hybrid ASR models. E2E is particularly well suited to multilingual approaches because it doesn't require language-specific phone alignments for training. Recent work has improved multilingual E2E modeling over naive data pooling on up to several dozen languages by using both language-specific and language-universal model parameters, as well as providing information about the language being presented to the network. Complementary to previous work we analyze language-specific parameters in the attention mechanism of Conformer-based encoder models. We show that using language-specific parameters in the attention mechanism can improve performance across six languages by up to 12% compared to standard multilingual baselines and up to 36% compared to monolingual baselines, without requiring any additional parameters during monolingual inference nor fine-tuning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多语言端到端语音识别中语言特异性自注意参数的探索
在过去几年中,端到端(E2E) ASR模型的性能大多超过了混合ASR模型。E2E特别适合多语言方法,因为它不需要针对特定语言的电话校准进行培训。最近的工作通过使用特定于语言和通用语言的模型参数,以及提供有关呈现给网络的语言的信息,改进了多语言的E2E建模,而不是针对多达几十种语言的原始数据池。作为对先前工作的补充,我们分析了基于一致性的编码器模型的注意机制中的特定语言参数。我们表明,在注意机制中使用语言特定参数,与标准多语言基线相比,可以将六种语言的表现提高12%,与单语言基线相比,可以提高36%,而在单语言推理或微调期间不需要任何额外的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phone-Level Pronunciation Scoring for L1 Using Weighted-Dynamic Time Warping The Clever Hans Effect in Voice Spoofing Detection A Multi-Modal Array of Interpretable Features to Evaluate Language and Speech Patterns in Different Neurological Disorders Unsupervised Domain Adaptation of Neural PLDA Using Segment Pairs for Speaker Verification Learning Accent Representation with Multi-Level VAE Towards Controllable Speech Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1