Transparent electroencephalography? : Exploring ear-EEG for long-term, mobile electrophysiology

S. Debener, M. Bleichner
{"title":"Transparent electroencephalography? : Exploring ear-EEG for long-term, mobile electrophysiology","authors":"S. Debener, M. Bleichner","doi":"10.1109/IWW-BCI.2019.8737309","DOIUrl":null,"url":null,"abstract":"Multi-channel electroencephalography (EEG) is the most frequently used technology for brain-computer interface (BCI) and neurofeedback (NFB) applications, however it suffers from various limitations. Among others, the placement of electrodes on the scalp is distracting, time-consuming, uncomfortable, and it does not ensure good signal quality over extended periods of time. Moreover, the use of bulky amplifiers and wired connections to recording computers reduces the portability and mobility of BCI and NFB applications. In order to overcome these limitations, flex-printed disposable electrode arrays have been developed. The cEEGrid is a convenient-to-use array composed of 10 electrodes located around the ear. Results from several validation studies will be presented here, supporting the claim that around the ear EEG acquisition provides sufficient information to support BCI applications. When compared to cap-EEG, ear-EEG provides less spatial information but it facilitates long-term EEG acquisition in natural environments and thereby promises new avenues for EEG-BCI.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Multi-channel electroencephalography (EEG) is the most frequently used technology for brain-computer interface (BCI) and neurofeedback (NFB) applications, however it suffers from various limitations. Among others, the placement of electrodes on the scalp is distracting, time-consuming, uncomfortable, and it does not ensure good signal quality over extended periods of time. Moreover, the use of bulky amplifiers and wired connections to recording computers reduces the portability and mobility of BCI and NFB applications. In order to overcome these limitations, flex-printed disposable electrode arrays have been developed. The cEEGrid is a convenient-to-use array composed of 10 electrodes located around the ear. Results from several validation studies will be presented here, supporting the claim that around the ear EEG acquisition provides sufficient information to support BCI applications. When compared to cap-EEG, ear-EEG provides less spatial information but it facilitates long-term EEG acquisition in natural environments and thereby promises new avenues for EEG-BCI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透明的脑电图吗?探索耳-脑电图的长期活动电生理
多通道脑电图(EEG)是脑机接口(BCI)和神经反馈(NFB)应用中最常用的技术,但它存在各种局限性。其中,在头皮上放置电极分散注意力,耗时,不舒服,并且不能保证长时间的良好信号质量。此外,使用笨重的放大器和有线连接到记录计算机降低了BCI和NFB应用程序的可移植性和移动性。为了克服这些限制,柔性印刷一次性电极阵列已经被开发出来。cEEGrid是一种方便使用的阵列,由位于耳朵周围的10个电极组成。本文将介绍几项验证研究的结果,支持耳旁EEG采集为BCI应用提供足够信息的说法。与帽脑电图相比,耳脑电图提供的空间信息较少,但有利于自然环境下的长期脑电图采集,从而为脑电图脑机接口的研究开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biometrics Based on Single-Trial EEG The Effect of a Binaural Beat Combined with Autonomous Sensory Meridian Response Triggers on Brainwave Entrainment Estimation of speed and direction of arm movements from M1 activity using a nonlinear neural decoder A Hybrid MI-SSVEP based Brain Computer Interface for Potential Upper Limb Neurorehabilitation: A Pilot Study Recurrent convolutional neural network model based on temporal and spatial feature for motor imagery classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1