Synchronization Minimizing Statistical Detectability for Side-Informed JPEG Steganography

Quentin Giboulot, P. Bas, R. Cogranne
{"title":"Synchronization Minimizing Statistical Detectability for Side-Informed JPEG Steganography","authors":"Quentin Giboulot, P. Bas, R. Cogranne","doi":"10.1109/WIFS49906.2020.9360884","DOIUrl":null,"url":null,"abstract":"Current schemes in steganography relying on synchronization are all based on a general heuristic to take into account interactions between embedding changes. However these approaches, while often competitive, lack a clear model for the relationship between pixels/DCT coefficient and the distortion function, and, as such, do not give any guarantees in terms of detectabilty. To solve this problem, we herein propose a synchronized side-informed scheme in the JPEG domain based on minimizing statistical detectability which achieves state-of-the- art performances. This is done by exploiting a statistical model that takes into account correlations between DCT coefficients and adding an optimal steganographic-signal with covariance which is a scaled version of the cover noise covariance. This method allows a clear understanding of the reasons why, depending on the processing pipeline, synchronization using both intra and inter-block dependencies allows such gains in performance.","PeriodicalId":354881,"journal":{"name":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS49906.2020.9360884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Current schemes in steganography relying on synchronization are all based on a general heuristic to take into account interactions between embedding changes. However these approaches, while often competitive, lack a clear model for the relationship between pixels/DCT coefficient and the distortion function, and, as such, do not give any guarantees in terms of detectabilty. To solve this problem, we herein propose a synchronized side-informed scheme in the JPEG domain based on minimizing statistical detectability which achieves state-of-the- art performances. This is done by exploiting a statistical model that takes into account correlations between DCT coefficients and adding an optimal steganographic-signal with covariance which is a scaled version of the cover noise covariance. This method allows a clear understanding of the reasons why, depending on the processing pipeline, synchronization using both intra and inter-block dependencies allows such gains in performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同步最小化统计可检测的侧面通知JPEG隐写
当前依赖于同步的隐写术方案都是基于一个通用的启发式来考虑嵌入变化之间的相互作用。然而,这些方法虽然经常具有竞争性,但缺乏像素/DCT系数与失真函数之间关系的清晰模型,因此,在可检测性方面不能提供任何保证。为了解决这一问题,本文提出了一种基于最小化统计可检测性的JPEG域同步侧通知方案,该方案达到了最先进的性能。这是通过利用一个统计模型来实现的,该模型考虑了DCT系数之间的相关性,并添加了一个带有协方差的最佳隐写信号,协方差是覆盖噪声协方差的缩放版本。这种方法可以让我们清楚地理解,根据处理管道的不同,使用块内和块间依赖项的同步可以提高性能的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Post-Quantum Secure Two-Party Computation for Iris Biometric Template Protection AmpleDroid Recovering Large Object Files from Android Application Memory The Suitability of RSA for Bulk Data Encryption ALASKA#2: Challenging Academic Research on Steganalysis with Realistic Images Landmark Breaker: Obstructing DeepFake By Disturbing Landmark Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1