Learning word embeddings from dependency relations

Yinggong Zhao, Shujian Huang, Xinyu Dai, Jianbing Zhang, Jiajun Chen
{"title":"Learning word embeddings from dependency relations","authors":"Yinggong Zhao, Shujian Huang, Xinyu Dai, Jianbing Zhang, Jiajun Chen","doi":"10.1109/IALP.2014.6973490","DOIUrl":null,"url":null,"abstract":"Continuous-space word representation has demonstrated its effectiveness in many natural language pro-cessing(NLP) tasks. The basic idea for embedding training is to update embedding matrix based on its context. However, such context has been constrained on fixed surrounding words, which we believe are not sufficient to represent the actual relations for given center word. In this work we extend previous approach by learning distributed representations from dependency structure of a sentence which can capture long distance relations. Such context can learn better semantics for words, which is proved on Semantic-Syntactic Word Relationship task. Besides, competitive result is also achieved for dependency embeddings on WordSim-353 task.","PeriodicalId":117334,"journal":{"name":"2014 International Conference on Asian Language Processing (IALP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2014.6973490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Continuous-space word representation has demonstrated its effectiveness in many natural language pro-cessing(NLP) tasks. The basic idea for embedding training is to update embedding matrix based on its context. However, such context has been constrained on fixed surrounding words, which we believe are not sufficient to represent the actual relations for given center word. In this work we extend previous approach by learning distributed representations from dependency structure of a sentence which can capture long distance relations. Such context can learn better semantics for words, which is proved on Semantic-Syntactic Word Relationship task. Besides, competitive result is also achieved for dependency embeddings on WordSim-353 task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从依赖关系中学习词嵌入
连续空间词表示在许多自然语言处理(NLP)任务中已经证明了它的有效性。嵌入训练的基本思想是基于上下文更新嵌入矩阵。然而,这种语境被限制在固定的周围词上,我们认为这些词不足以代表给定中心词的实际关系。在这项工作中,我们扩展了以前的方法,从可以捕获长距离关系的句子的依赖结构中学习分布式表示。这在语义-句法词关系任务中得到了验证。此外,在WordSim-353任务上的依赖项嵌入也取得了竞争结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic detection of subject/object drops in Bengali Which performs better for new word detection, character based or Chinese Word Segmentation based? Effectiveness of multiscale fractal dimension-based phonetic segmentation in speech synthesis for low resource language A Cepstral Mean Subtraction based features for Singer Identification The analysis on mistaken segmentation of Tibetan words based on statistical method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1