A Smoothing Support Vector Machine Based on Quarter Penalty Function

M. Jiang, Z. Meng, Gengui Zhou
{"title":"A Smoothing Support Vector Machine Based on Quarter Penalty Function","authors":"M. Jiang, Z. Meng, Gengui Zhou","doi":"10.1109/CIS.2007.92","DOIUrl":null,"url":null,"abstract":"It is very important to find out a smoothing support vec- tor machine. This paper studies a smoothing support vec- tor machine (SVM) by using quarter penalty function. We introduce the optimization problem of SVM with an uncon- strained and nonsmooth optimization problem via quarter penalty function. Then, we define a one-order differentiable function to approximately smooth the penalty function, and get an unconstrained and smooth optimization problem. By error analysis, we may obtain approximate solution of SVM by solving its approximately smooth penalty optimization problem without constraints. The numerical experiment shows that our smoothing SVM is efficient.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

It is very important to find out a smoothing support vec- tor machine. This paper studies a smoothing support vec- tor machine (SVM) by using quarter penalty function. We introduce the optimization problem of SVM with an uncon- strained and nonsmooth optimization problem via quarter penalty function. Then, we define a one-order differentiable function to approximately smooth the penalty function, and get an unconstrained and smooth optimization problem. By error analysis, we may obtain approximate solution of SVM by solving its approximately smooth penalty optimization problem without constraints. The numerical experiment shows that our smoothing SVM is efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于四分之一罚函数的平滑支持向量机
寻找一种平滑支持向量机是十分重要的。本文研究了一种基于四分之一罚函数的平滑支持向量机。介绍了支持向量机的优化问题,并提出了一个基于四分之一罚函数的非应变非光滑优化问题。然后,我们定义了一个一阶可微函数来近似光滑惩罚函数,得到了一个无约束的光滑优化问题。通过误差分析,我们可以通过求解支持向量机的无约束近似光滑惩罚优化问题得到支持向量机的近似解。数值实验表明,所提出的平滑支持向量机是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and Performance Evaluation of an Adaptable Failure Detector for Distributed System Generalized Synchronization Theorem for Non-Autonomous Differential Equation with Application in Encryption Scheme Adaptive Trust Management in MANET The Study of Compost Quality Evaluation Modeling Method Based on Wavelet Neural Network for Sewage Treatment Game Theory Based Optimization of Security Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1