Concept Detection in Multimedia Web Resources About Home Made Explosives

George Kalpakis, T. Tsikrika, Fotini Markatopoulou, Nikiforos Pittaras, S. Vrochidis, V. Mezaris, I. Patras, Y. Kompatsiaris
{"title":"Concept Detection in Multimedia Web Resources About Home Made Explosives","authors":"George Kalpakis, T. Tsikrika, Fotini Markatopoulou, Nikiforos Pittaras, S. Vrochidis, V. Mezaris, I. Patras, Y. Kompatsiaris","doi":"10.1109/ARES.2015.85","DOIUrl":null,"url":null,"abstract":"This work investigates the effectiveness of a state-of-the-art concept detection framework for the automatic classification of multimedia content, namely images and videos, embedded in publicly available Web resources containing recipes for the synthesis of Home Made Explosives (HMEs), to a set of predefined semantic concepts relevant to the HME domain. The concept detection framework employs advanced methods for video (shot) segmentation, visual feature extraction (using SIFT, SURF, and their variations), and classification based on machine learning techniques (logistic regression). The evaluation experiments are performed using an annotated collection of multimedia HME content discovered on the Web, and a set of concepts, which emerged both from an empirical study, and were also provided by domain experts and interested stakeholders, including Law Enforcement Agencies personnel. The experiments demonstrate the satisfactory performance of our framework, which in turn indicates the significant potential of the adopted approaches on the HME domain.","PeriodicalId":331539,"journal":{"name":"2015 10th International Conference on Availability, Reliability and Security","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2015.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work investigates the effectiveness of a state-of-the-art concept detection framework for the automatic classification of multimedia content, namely images and videos, embedded in publicly available Web resources containing recipes for the synthesis of Home Made Explosives (HMEs), to a set of predefined semantic concepts relevant to the HME domain. The concept detection framework employs advanced methods for video (shot) segmentation, visual feature extraction (using SIFT, SURF, and their variations), and classification based on machine learning techniques (logistic regression). The evaluation experiments are performed using an annotated collection of multimedia HME content discovered on the Web, and a set of concepts, which emerged both from an empirical study, and were also provided by domain experts and interested stakeholders, including Law Enforcement Agencies personnel. The experiments demonstrate the satisfactory performance of our framework, which in turn indicates the significant potential of the adopted approaches on the HME domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自制炸药多媒体网络资源中的概念检测
这项工作研究了一个最先进的概念检测框架的有效性,该框架用于对多媒体内容(即图像和视频)进行自动分类,这些内容嵌入到包含自制炸药(HMEs)合成配方的公开可用Web资源中,并与一组与HME领域相关的预定义语义概念进行分类。概念检测框架采用先进的方法进行视频(镜头)分割、视觉特征提取(使用SIFT、SURF及其变体)和基于机器学习技术的分类(逻辑回归)。评估实验是使用在Web上发现的多媒体HME内容的注释集合和一组概念进行的,这些概念来自于实证研究,也由领域专家和感兴趣的利益相关者(包括执法机构人员)提供。实验证明了我们的框架的令人满意的性能,这反过来又表明了所采用的方法在HME领域的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Role and Security of Firewalls in IaaS Cloud Computing Intensifying State Surveillance of Electronic Communications: A Legal Solution in Addressing Extremism or Not? Countermeasures for Covert Channel-Internal Control Protocols A Performance Evaluation of Hash Functions for IP Reputation Lookup Using Bloom Filters Advanced Attribute-Based Key Management for Mobile Devices in Hybrid Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1