Improving the Art, Craft and Science of Economic Credit Risk Scorecards Using Random Forests: Why Credit Scorers and Economists Should Use Random Forests
{"title":"Improving the Art, Craft and Science of Economic Credit Risk Scorecards Using Random Forests: Why Credit Scorers and Economists Should Use Random Forests","authors":"Dhruv Sharma","doi":"10.2139/ssrn.1861535","DOIUrl":null,"url":null,"abstract":"This paper outlines an approach to improving credit score modeling using random forests and compares random forests with logistic regression. It is shown that on data sets where variables have multicollinearity and complex interrelationships random forests provide a more scientific approach to analyzing variable importance and achieving optimal predictive accuracy. In addition it is shown that random forests should be used in econometric and credit risk models as they provide a powerful too to assess meaning of variables not available in standard regression models and thus allow for more robust findings.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1861535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper outlines an approach to improving credit score modeling using random forests and compares random forests with logistic regression. It is shown that on data sets where variables have multicollinearity and complex interrelationships random forests provide a more scientific approach to analyzing variable importance and achieving optimal predictive accuracy. In addition it is shown that random forests should be used in econometric and credit risk models as they provide a powerful too to assess meaning of variables not available in standard regression models and thus allow for more robust findings.