Disk allocation methods for parallelizing grid files

Yvonne Zhou, S. Shekhar, Mark Coyle
{"title":"Disk allocation methods for parallelizing grid files","authors":"Yvonne Zhou, S. Shekhar, Mark Coyle","doi":"10.1109/ICDE.1994.283037","DOIUrl":null,"url":null,"abstract":"The grid file is a well known access method for multi-dimensional and spatial data. The response time needed to process path and range queries on the grid file access method can be improved significantly by distributing the data pages over multiple disks. The paper explores the disk allocation methods used to allocate the data pages of grid file among a set of disks, which can be accessed in parallel. Given N disks, a perfect allocation will speed up the processing of each query by a factor of N in this environment. The authors show that no disk allocation is perfect for the set of all orthogonal range queries, even on uniformly distributed read-only data. They then introduce two families of allocation methods, namely the Linear allocation method and the Lattice allocation method, which are perfect for a large collection of interesting path queries (rows, columns, diagonals, anti-diagonals) and range queries (small rectangles), on an interesting set of data distributions. They address the issues in extending disk allocation methods to general data distributions with random updates. Finally, they provide experimental results on the performance of the proposed methods and other well known disk allocation methods on different query sets, data distributions and data set sizes.<<ETX>>","PeriodicalId":142465,"journal":{"name":"Proceedings of 1994 IEEE 10th International Conference on Data Engineering","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 10th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1994.283037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

The grid file is a well known access method for multi-dimensional and spatial data. The response time needed to process path and range queries on the grid file access method can be improved significantly by distributing the data pages over multiple disks. The paper explores the disk allocation methods used to allocate the data pages of grid file among a set of disks, which can be accessed in parallel. Given N disks, a perfect allocation will speed up the processing of each query by a factor of N in this environment. The authors show that no disk allocation is perfect for the set of all orthogonal range queries, even on uniformly distributed read-only data. They then introduce two families of allocation methods, namely the Linear allocation method and the Lattice allocation method, which are perfect for a large collection of interesting path queries (rows, columns, diagonals, anti-diagonals) and range queries (small rectangles), on an interesting set of data distributions. They address the issues in extending disk allocation methods to general data distributions with random updates. Finally, they provide experimental results on the performance of the proposed methods and other well known disk allocation methods on different query sets, data distributions and data set sizes.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行网格文件的磁盘分配方法
网格文件是一种众所周知的多维空间数据访问方法。通过将数据页分布在多个磁盘上,可以显著改善处理网格文件访问方法上的路径和范围查询所需的响应时间。探讨了将网格文件的数据页分配到一组可并行访问的磁盘上的方法。给定N个磁盘,在这种环境中,完美的分配将使每个查询的处理速度提高N倍。作者表明,对于所有正交范围查询的集合,没有磁盘分配是完美的,即使在均匀分布的只读数据上也是如此。然后,他们介绍了两种分配方法,即线性分配方法和晶格分配方法,它们非常适合于在一组有趣的数据分布上进行大量有趣的路径查询(行、列、对角线、反对角线)和范围查询(小矩形)。它们解决了将磁盘分配方法扩展到具有随机更新的一般数据分布中的问题。最后,他们提供了在不同查询集、数据分布和数据集大小上所提出的方法和其他已知的磁盘分配方法的性能实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cooperative problem solving using database conversations Active databases for active repositories Data placement and buffer management for concurrent mergesorts with parallel prefetching QBISM: extending a DBMS to support 3D medical images Sort-merge-join: an idea whose time has(h) passed?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1