{"title":"Impact of Notch Geometry on the Pressure Bearing Capacity of AISI 316L Austenitic Stainless Steel under Fatigue Loading","authors":"J. J. Kumar, G. Diwakar, V. Satyanarayana","doi":"10.13189/ujme.2019.070605","DOIUrl":null,"url":null,"abstract":"In the current research, pressure bearing capacity of AISI 316L austenitic stainless steel is evaluated under fatigue loading through finite element method (ANSYS 18.1) for a specimen with no notch on its surface. Thereafter, the pressure bearing capacity of the same specimen is evaluated with rectangular and V-notches at the center. The notch geometry is changed in terms of its width, depth and the notch central angle (perimeter length) for each of the rectangular and V-notched cases. Fifteen types of rectangular notch and V-notch geometries are undertaken for the research as required by Box-Behnken model of Response Surface Methodology (RSM) analysis. The primary objective of the research is to evaluate the impact of notch geometry on the pressure bearing capacity under fatigue loading conditions. It is observed that fatigue life degraded more with V-notched specimens when compared to rectangular notched ones. Regression equations are developed and surface plots are generated for both rectangular and V-notch cases for the pressure bearing capacity which is dependent on width, depth and notch central angle.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujme.2019.070605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the current research, pressure bearing capacity of AISI 316L austenitic stainless steel is evaluated under fatigue loading through finite element method (ANSYS 18.1) for a specimen with no notch on its surface. Thereafter, the pressure bearing capacity of the same specimen is evaluated with rectangular and V-notches at the center. The notch geometry is changed in terms of its width, depth and the notch central angle (perimeter length) for each of the rectangular and V-notched cases. Fifteen types of rectangular notch and V-notch geometries are undertaken for the research as required by Box-Behnken model of Response Surface Methodology (RSM) analysis. The primary objective of the research is to evaluate the impact of notch geometry on the pressure bearing capacity under fatigue loading conditions. It is observed that fatigue life degraded more with V-notched specimens when compared to rectangular notched ones. Regression equations are developed and surface plots are generated for both rectangular and V-notch cases for the pressure bearing capacity which is dependent on width, depth and notch central angle.