{"title":"Performance of PHY/MAC Cross-Layer Design for Next-Generation V2X Applications","authors":"Andy Triwinarko, S. Cherkaoui, I. Dayoub","doi":"10.1109/IoTaIS56727.2022.9975999","DOIUrl":null,"url":null,"abstract":"This paper proposed the use of physical (PHY) and medium access control (MAC) cross-layer approach to obtain two goals outlined by the next-generation V2X (NGV) ’s project authorisation request (PAR) of IEEE 802.11bd group, namely having twice the MAC layer throughput and able to operate in a high mobility scenario of up to 500 km/h. At the PHY layer, we suggested utilising mid-ambles channel estimation (MCE), dual-carrier modulation (DCM), and multiple-input multiple-output space-time block coding (MIMO-STBC). At the MAC layer, we suggested an aggregate MAC protocol data unit (A-MPDU) aggregation technique, choosing an appropriate contention window (CW) value, and setting a limit for re-transmissions. We designed a model utilising a cross-layer approach then we simulated the performance of normalised system throughput for two types of V2X applications, namely safety-related (high reliability) and non-safety (high throughput) V2X applications. To better portray the high-mobility scenario, we used the enhanced highway line of sight (LOS) channel model. Our simulation results showed two times normalized throughput performance improvement for both V2X applications in a high mobility environment, as requested by the NGV standard’s PAR.","PeriodicalId":138894,"journal":{"name":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTaIS56727.2022.9975999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposed the use of physical (PHY) and medium access control (MAC) cross-layer approach to obtain two goals outlined by the next-generation V2X (NGV) ’s project authorisation request (PAR) of IEEE 802.11bd group, namely having twice the MAC layer throughput and able to operate in a high mobility scenario of up to 500 km/h. At the PHY layer, we suggested utilising mid-ambles channel estimation (MCE), dual-carrier modulation (DCM), and multiple-input multiple-output space-time block coding (MIMO-STBC). At the MAC layer, we suggested an aggregate MAC protocol data unit (A-MPDU) aggregation technique, choosing an appropriate contention window (CW) value, and setting a limit for re-transmissions. We designed a model utilising a cross-layer approach then we simulated the performance of normalised system throughput for two types of V2X applications, namely safety-related (high reliability) and non-safety (high throughput) V2X applications. To better portray the high-mobility scenario, we used the enhanced highway line of sight (LOS) channel model. Our simulation results showed two times normalized throughput performance improvement for both V2X applications in a high mobility environment, as requested by the NGV standard’s PAR.