Performance of PHY/MAC Cross-Layer Design for Next-Generation V2X Applications

Andy Triwinarko, S. Cherkaoui, I. Dayoub
{"title":"Performance of PHY/MAC Cross-Layer Design for Next-Generation V2X Applications","authors":"Andy Triwinarko, S. Cherkaoui, I. Dayoub","doi":"10.1109/IoTaIS56727.2022.9975999","DOIUrl":null,"url":null,"abstract":"This paper proposed the use of physical (PHY) and medium access control (MAC) cross-layer approach to obtain two goals outlined by the next-generation V2X (NGV) ’s project authorisation request (PAR) of IEEE 802.11bd group, namely having twice the MAC layer throughput and able to operate in a high mobility scenario of up to 500 km/h. At the PHY layer, we suggested utilising mid-ambles channel estimation (MCE), dual-carrier modulation (DCM), and multiple-input multiple-output space-time block coding (MIMO-STBC). At the MAC layer, we suggested an aggregate MAC protocol data unit (A-MPDU) aggregation technique, choosing an appropriate contention window (CW) value, and setting a limit for re-transmissions. We designed a model utilising a cross-layer approach then we simulated the performance of normalised system throughput for two types of V2X applications, namely safety-related (high reliability) and non-safety (high throughput) V2X applications. To better portray the high-mobility scenario, we used the enhanced highway line of sight (LOS) channel model. Our simulation results showed two times normalized throughput performance improvement for both V2X applications in a high mobility environment, as requested by the NGV standard’s PAR.","PeriodicalId":138894,"journal":{"name":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTaIS56727.2022.9975999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposed the use of physical (PHY) and medium access control (MAC) cross-layer approach to obtain two goals outlined by the next-generation V2X (NGV) ’s project authorisation request (PAR) of IEEE 802.11bd group, namely having twice the MAC layer throughput and able to operate in a high mobility scenario of up to 500 km/h. At the PHY layer, we suggested utilising mid-ambles channel estimation (MCE), dual-carrier modulation (DCM), and multiple-input multiple-output space-time block coding (MIMO-STBC). At the MAC layer, we suggested an aggregate MAC protocol data unit (A-MPDU) aggregation technique, choosing an appropriate contention window (CW) value, and setting a limit for re-transmissions. We designed a model utilising a cross-layer approach then we simulated the performance of normalised system throughput for two types of V2X applications, namely safety-related (high reliability) and non-safety (high throughput) V2X applications. To better portray the high-mobility scenario, we used the enhanced highway line of sight (LOS) channel model. Our simulation results showed two times normalized throughput performance improvement for both V2X applications in a high mobility environment, as requested by the NGV standard’s PAR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向下一代V2X应用的PHY/MAC跨层设计性能研究
本文提出使用物理(PHY)和介质访问控制(MAC)跨层方法来实现IEEE 802.11bd组下一代V2X (NGV)项目授权请求(PAR)概述的两个目标,即具有两倍的MAC层吞吐量并能够在高达500 km/h的高移动性场景中运行。在物理层,我们建议使用中间信道估计(MCE)、双载波调制(DCM)和多输入多输出空时分组编码(MIMO-STBC)。在MAC层,我们提出了聚合MAC协议数据单元(a - mpdu)聚合技术,选择适当的争用窗口(CW)值,并设置重传限制。我们利用跨层方法设计了一个模型,然后我们模拟了两种类型V2X应用的标准化系统吞吐量的性能,即安全相关(高可靠性)和非安全(高吞吐量)V2X应用。为了更好地描述高机动性场景,我们使用了增强型公路视线(LOS)通道模型。我们的模拟结果显示,在高移动性环境中,两种V2X应用程序的标准化吞吐量性能提高了两倍,符合NGV标准PAR的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selecting Resource-Efficient ML Models for Transport Mode Detection on Mobile Devices A Two-Step Machine Learning Model for Stage-Specific Disease Survivability Prediction Comparing Analog and Digital Processing for Ultra Low-Power Embedded Artificial Intelligence Channel Estimation in Cellular Massive MIMO: A Data-Driven Approach A proposal on the control mechanism among distributed MQTT brokers over wide area networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1