Hao Zhang, William Banick, D. Yao, Naren Ramakrishnan
{"title":"User Intention-Based Traffic Dependence Analysis for Anomaly Detection","authors":"Hao Zhang, William Banick, D. Yao, Naren Ramakrishnan","doi":"10.1109/SPW.2012.15","DOIUrl":null,"url":null,"abstract":"This paper describes an approach to enforce dependencies between network traffic and user activities for anomaly detection. We present a framework and algorithms that analyze user actions and network events on a host according to their dependencies. Discovering these relations is useful in identifying anomalous events on a host that are caused by software flaws or malicious code. To demonstrate the feasibility of user intention-based traffic dependence analysis, we implement a prototype called CR-Miner and perform extensive experimental evaluation of the accuracy, security, and efficiency of our algorithm. The results show that our algorithm can identify user intention-based traffic dependence with high accuracy (average 99:6% for 20 users) and low false alarms. Our prototype can successfully detect several pieces of HTTP-based real-world spy ware. Our dependence analysis is fast with a minimal storage requirement. We give a thorough analysis on the security and robustness of the user intention-based traffic dependence approach.","PeriodicalId":201519,"journal":{"name":"2012 IEEE Symposium on Security and Privacy Workshops","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Symposium on Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
This paper describes an approach to enforce dependencies between network traffic and user activities for anomaly detection. We present a framework and algorithms that analyze user actions and network events on a host according to their dependencies. Discovering these relations is useful in identifying anomalous events on a host that are caused by software flaws or malicious code. To demonstrate the feasibility of user intention-based traffic dependence analysis, we implement a prototype called CR-Miner and perform extensive experimental evaluation of the accuracy, security, and efficiency of our algorithm. The results show that our algorithm can identify user intention-based traffic dependence with high accuracy (average 99:6% for 20 users) and low false alarms. Our prototype can successfully detect several pieces of HTTP-based real-world spy ware. Our dependence analysis is fast with a minimal storage requirement. We give a thorough analysis on the security and robustness of the user intention-based traffic dependence approach.