Monitoring system architecture for the multi-scale blockchain-based logistic network

V. Kashansky, R. Prodan, Aso Validi, C. Olaverri-Monreal, G. Radchenko
{"title":"Monitoring system architecture for the multi-scale blockchain-based logistic network","authors":"V. Kashansky, R. Prodan, Aso Validi, C. Olaverri-Monreal, G. Radchenko","doi":"10.1145/3492323.3495633","DOIUrl":null,"url":null,"abstract":"Contemporary control processes and methods in multi-scale, cyber-physical systems require precise data collection at various levels, timely transmission, and analysis involving large number of computing and storage elements connected within high-performance permissioned consensus networks. For example, in transport networks, resources tend to form multi-scale dynamical systems with diverse operational requirements, including data exchange policies and consensus protocols. Apart from designing complete topology, chaincodes and consensus logic, effective monitoring of the applications and infrastructure of such complex systems remains a research challenge. In this paper, we discuss important aspects of the data-intensive applications monitoring investigated in the frames of the ADAPT project. We present highlights on the toolsets, architectures and details on possible optimization approaches for monitoring data collection. We introduce a dynamic multi-scale monitoring system architecture with preliminary workflow model. It allows obtaining effective low-latency publish-subscribe matching of the dynamically varying monitoring tasks and executing machines.","PeriodicalId":440884,"journal":{"name":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3492323.3495633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Contemporary control processes and methods in multi-scale, cyber-physical systems require precise data collection at various levels, timely transmission, and analysis involving large number of computing and storage elements connected within high-performance permissioned consensus networks. For example, in transport networks, resources tend to form multi-scale dynamical systems with diverse operational requirements, including data exchange policies and consensus protocols. Apart from designing complete topology, chaincodes and consensus logic, effective monitoring of the applications and infrastructure of such complex systems remains a research challenge. In this paper, we discuss important aspects of the data-intensive applications monitoring investigated in the frames of the ADAPT project. We present highlights on the toolsets, architectures and details on possible optimization approaches for monitoring data collection. We introduce a dynamic multi-scale monitoring system architecture with preliminary workflow model. It allows obtaining effective low-latency publish-subscribe matching of the dynamically varying monitoring tasks and executing machines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区块链的多尺度物流网络监控系统架构
多尺度网络物理系统中的现代控制过程和方法需要在各个层面上精确收集数据,及时传输数据,并分析涉及在高性能许可共识网络中连接的大量计算和存储元素。例如,在传输网络中,资源倾向于形成具有不同操作需求的多尺度动态系统,包括数据交换策略和共识协议。除了设计完整的拓扑、链码和共识逻辑外,有效监控此类复杂系统的应用和基础设施仍然是一个研究挑战。在本文中,我们讨论了在ADAPT项目框架下调查的数据密集型应用程序监控的重要方面。我们重点介绍了用于监控数据收集的工具集、体系结构和可能的优化方法的细节。介绍了一种具有初步工作流模型的动态多尺度监控系统架构。它允许获得动态变化的监视任务和执行机器的有效的低延迟发布-订阅匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain-based distributed platform for accountable medical data sharing An empirical analysis of LADA diabetes case, control and variable importance Estimating the capacities of function-as-a-service functions Session details: International Workshop on Machine Learning and Health Informatics (MLHI) Alcoholism detection via GLCM and particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1