{"title":"Spontaneously Broken Symmetries","authors":"J. Iliopoulos, T. Tomaras","doi":"10.1093/oso/9780198805175.003.0005","DOIUrl":null,"url":null,"abstract":"The phenomenon of spontaneous symmetry breaking is a common feature of phase transitions in both classical and quantum physics. In a first part we study this phenomenon for the case of a global internal symmetry and give a simple proof of Goldstone’s theorem. We show that a massless excitation appears, corresponding to every generator of a spontaneously broken symmetry. In a second part we extend these ideas to the case of gauge symmetries and derive the Brout–Englert–Higgs mechanism. We show that the gauge boson associated with the spontaneously broken generator acquires a mass and the corresponding field, which would have been the Goldstone boson, decouples and disappears. Its degree of freedom is used to allow the transition from a massless to a massive vector field.","PeriodicalId":285777,"journal":{"name":"Elementary Particle Physics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementary Particle Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198805175.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The phenomenon of spontaneous symmetry breaking is a common feature of phase transitions in both classical and quantum physics. In a first part we study this phenomenon for the case of a global internal symmetry and give a simple proof of Goldstone’s theorem. We show that a massless excitation appears, corresponding to every generator of a spontaneously broken symmetry. In a second part we extend these ideas to the case of gauge symmetries and derive the Brout–Englert–Higgs mechanism. We show that the gauge boson associated with the spontaneously broken generator acquires a mass and the corresponding field, which would have been the Goldstone boson, decouples and disappears. Its degree of freedom is used to allow the transition from a massless to a massive vector field.