{"title":"Inspection of Separability of Normal and Migraine fNIRS Data using LDA and PCA","authors":"I. Sen, Andreas Akun","doi":"10.1109/SIU.2006.1659789","DOIUrl":null,"url":null,"abstract":"Functional near infrared spectroscopy (fNIRS) is an exciting, relatively new method to measure cognitive activity in the brain. Since the method measures blood oxygenation, it can be used for examining the differences between migraineurs and healthy people since migraine is a neurovascular disease. The aim of this study is to inspect the differences in neurovascular dynamics of healthy subjects and migraineurs. To achieve this aim, linear discriminant analysis (LDA) and principal component analysis (PCA) have been applied to acquired fNIRS signals, and parametric classification has been performed to quantify the separability","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Functional near infrared spectroscopy (fNIRS) is an exciting, relatively new method to measure cognitive activity in the brain. Since the method measures blood oxygenation, it can be used for examining the differences between migraineurs and healthy people since migraine is a neurovascular disease. The aim of this study is to inspect the differences in neurovascular dynamics of healthy subjects and migraineurs. To achieve this aim, linear discriminant analysis (LDA) and principal component analysis (PCA) have been applied to acquired fNIRS signals, and parametric classification has been performed to quantify the separability