Reproducible modelling: Why is it so hard?

D. Holzworth, N. Huth
{"title":"Reproducible modelling: Why is it so hard?","authors":"D. Holzworth, N. Huth","doi":"10.36334/modsim.2023.holzworth","DOIUrl":null,"url":null,"abstract":": Modelling at scale involves creating workflows that connect data to tools, utilities, and models. Often this is a manual process (e.g. scripts with no automation) that evolves over time. Unless there is clear, detailed documentation, that is accessible, it can be very difficult to reproduce simulation results at some point in the future. Journal paper descriptions of simulation results are often not reproducible! The software development industry created Docker images to very clearly define an execution environment that is reproducible. The docker user creates a simple text-based recipe (dockerfile) that installs the software application (model) and its dependencies into an image that can be executed repeatedly. If the image is pushed to a docker repository (e.g. DockerHub) then it will be accessible by others. This solves part of the reproducibility problem by encapsulating the execution environment into a sharable image. It doesn’t solve the problem of identifying the model input data.","PeriodicalId":390064,"journal":{"name":"MODSIM2023, 25th International Congress on Modelling and Simulation.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MODSIM2023, 25th International Congress on Modelling and Simulation.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36334/modsim.2023.holzworth","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Modelling at scale involves creating workflows that connect data to tools, utilities, and models. Often this is a manual process (e.g. scripts with no automation) that evolves over time. Unless there is clear, detailed documentation, that is accessible, it can be very difficult to reproduce simulation results at some point in the future. Journal paper descriptions of simulation results are often not reproducible! The software development industry created Docker images to very clearly define an execution environment that is reproducible. The docker user creates a simple text-based recipe (dockerfile) that installs the software application (model) and its dependencies into an image that can be executed repeatedly. If the image is pushed to a docker repository (e.g. DockerHub) then it will be accessible by others. This solves part of the reproducibility problem by encapsulating the execution environment into a sharable image. It doesn’t solve the problem of identifying the model input data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可重复建模:为什么这么难?
:大规模建模包括创建将数据连接到工具、实用程序和模型的工作流。通常这是一个随时间演进的手动过程(例如,没有自动化的脚本)。除非有清晰、详细的文档,否则在将来的某个时候重现模拟结果是非常困难的。期刊论文对模拟结果的描述往往是不可重复的!软件开发行业创建Docker映像是为了非常清楚地定义可复制的执行环境。docker用户创建一个简单的基于文本的配方(dockerfile),将软件应用程序(模型)及其依赖项安装到一个可以重复执行的映像中。如果映像被推送到docker存储库(例如DockerHub),那么它将被其他人访问。这通过将执行环境封装到一个可共享的映像中来解决部分再现性问题。它不能解决识别模型输入数据的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling of the activated sludge process with a stratified settling unit Recent changes in the water and ecological condition at the arid Tarim River Basin A study on internal observation of vertical protective nets of temporary structures using image processing techniques Developing synthetic datasets for reef modelling Modelling hydrological impact of remotely sensed vegetation change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1