Self-Organizing Neural Population Coding for improving robotic visuomotor coordination

Tao Zhou, P. Dudek, Bertram E. Shi
{"title":"Self-Organizing Neural Population Coding for improving robotic visuomotor coordination","authors":"Tao Zhou, P. Dudek, Bertram E. Shi","doi":"10.1109/IJCNN.2011.6033393","DOIUrl":null,"url":null,"abstract":"We present an extension of Kohonen's Self Organizing Map (SOM) algorithm called the Self Organizing Neural Population Coding (SONPC) algorithm. The algorithm adapts online the neural population encoding of sensory and motor coordinates of a robot according to the underlying data distribution. By allocating more neurons towards area of sensory or motor space which are more frequently visited, this representation improves the accuracy of a robot system on a visually guided reaching task. We also suggest a Mean Reflection method to solve the notorious border effect problem encountered with SOMs for the special case where the latent space and the data space dimensions are the same.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present an extension of Kohonen's Self Organizing Map (SOM) algorithm called the Self Organizing Neural Population Coding (SONPC) algorithm. The algorithm adapts online the neural population encoding of sensory and motor coordinates of a robot according to the underlying data distribution. By allocating more neurons towards area of sensory or motor space which are more frequently visited, this representation improves the accuracy of a robot system on a visually guided reaching task. We also suggest a Mean Reflection method to solve the notorious border effect problem encountered with SOMs for the special case where the latent space and the data space dimensions are the same.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进机器人视觉运动协调的自组织神经群编码
我们提出了Kohonen的自组织映射(SOM)算法的扩展,称为自组织神经种群编码(SONPC)算法。该算法根据底层数据分布在线调整机器人的感觉坐标和运动坐标的神经种群编码。通过将更多的神经元分配到更频繁访问的感觉或运动空间区域,这种表示提高了机器人系统在视觉引导下到达任务的准确性。对于潜在空间和数据空间维度相同的特殊情况,我们还提出了一种平均反射方法来解决SOMs遇到的臭名昭著的边界效应问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1